Advertisement

Combination of Queueing Systems of Different Types with Common Buffer: A Theoretical Treatment

  • Oleg TikhonenkoEmail author
  • Marcin Ziółkowski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 800)

Abstract

In the paper, we investigate a combination of two following different queueing systems connected via common limited buffer space: (1) the system of M / G / 1-type, in which service time does not depend on demand volume; (2) the processor-sharing system, in which demand length arbitrarily depends on its volume. For such combination, we determine the steady-state loss probability and distribution of number of demands present in each system of the combination.

Keywords

Queueing system Demand volume Total demands capacity Buffer space capacity Processor-sharing system 

References

  1. 1.
    Tikhonenko, O.M.: Queueing Models in Computer Systems. Universitetskoe, Minsk (1990, in Russian)Google Scholar
  2. 2.
    Tikhonenko, O.: Computer Systems Probability Analysis. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2006, in Polish)Google Scholar
  3. 3.
    Alexandrov, A.M., Katz, B.A.: Non-homogeneous Demands Flows Service. Izvestiya AN SSSR. Tekhnicheskaya Kibernetika, No. 2, 47–53 (1973, in Russian)Google Scholar
  4. 4.
    Tikhonenko, O.M.: Destricted capacity queueing systems: determination of their characteristics. Autom. Remote Control 58(6), 969–972 (1997)zbMATHGoogle Scholar
  5. 5.
    Tikhonenko, O.M., Klimovich, K.G.: Queuing systems for random-length arrivals with limited cumulative volume. Probl. Inf. Transm. 37(1), 70–79 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tikhonenko, O.M.: Generalized erlang problem for service systems with finite total capacity. Probl. Inf. Transm. 41(3), 243–253 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tikhonenko, O.M.: Queuing systems with processor sharing and limited resources. Autom. Remote Control 71(5), 803–815 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tikhonenko, O.: Queueing systems with common buffer: a theoretical treatment. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 61–69. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21771-5_8 CrossRefGoogle Scholar
  9. 9.
    Yashkov, S.F., Yashkova, A.S.: Processor sharing: a survey of the mathematical theory. Autom. Remote Control 68(9), 1662–1731 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bocharov, P.P., D’Apice, C., Pechinkin A.V., Salerno, S.: Queueing Theory. VSP, Utrecht-Boston (2004)Google Scholar
  11. 11.
    Gaver, D.P.: Observing stochastic processes, and approximate transform inversion. Oper. Res. 14(3), 444–459 (1966)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stehfest, H.: Algorithm 368: numeric inversion of laplace transform. Commun. ACM 13(1), 47–49 (1970)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural Sciences, College of SciencesCardinal Stefan Wyszyński University in WarsawWarsawPoland
  2. 2.Institute of Mathematics and Computer SciencesJan Długosz University in CzęstochowaCzęstochowaPoland

Personalised recommendations