Advertisement

Analysis of Queueing Tandem with Feedback by the Method of Limiting Decomposition

  • Maria ShklennikEmail author
  • Svetlana Moiseeva
  • Alexander Moiseev
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 800)

Abstract

The paper presents the study of a two-stage infinite-server queueing system with feedback. The service time at each stage is given by an arbitrary distribution function. The method of limiting decomposition is used for the study. As a result of the research, stationary distributions of the number of customers at each stage of the system are found. The obtained analytical results are compared with the asymptotic ones which were obtained in previous papers.

Keywords

Infinite-server queueing tandem Method of limiting decomposition Feedback 

Notes

Acknowledgments

This work was partially supported (A. Moiseev) by the Ministry of Education and Science of the Russian Federation [Agreement number 02.a03.21.0008].

References

  1. 1.
    Boxma, O.J.: \(M/G/\infty \) Tandem Queues. Stoch. Proc. Apps. 18, 153–164 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ahn, H.-S., Duenyas, I., Lewis, M.E.: Optimal control of a two-stage tandem queuing system with flexible servers. Prob. Eng. Inf. Sci. 16, 453–469 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Moiseev, A., Nazarov, A.: Tandem of infinite-server queues with Markovian arrival process. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 323–333. Springer, Cham (2016). doi: 10.1007/978-3-319-30843-2_34 CrossRefGoogle Scholar
  4. 4.
    Coffman, E.G., Kleinrock, L.: Feedback queueing models for time-shared systems. J. Ass. Comput. Mach. 15(4), 549–576 (1968)CrossRefzbMATHGoogle Scholar
  5. 5.
    Foley, R.D., Disney, R.L.: Queues with delayed feedback. Adv. Appl. Probab. 15(1), 162–182 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Moiseeva, S., Zadiranova, L.: Feedback in infinite-server queuing systems. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 370–377. Springer, Cham (2016). doi: 10.1007/978-3-319-30843-2_38 CrossRefGoogle Scholar
  7. 7.
    König, D., Stoyan, D.: Methoden der Bedienungstheorie. Akademie-Verlag, Berlin (1976)zbMATHGoogle Scholar
  8. 8.
    Kleinrock, L.: Queueing Systems: Volume 1, Theory, vol. 1. Wiley Interscience, New York (1975)zbMATHGoogle Scholar
  9. 9.
    Sevastyanov, B.A.: An ergodic theorem for Markov processes and its application to telephone systems with fefusals. Theor. Prob. Appl. 2, 104–112 (1957)CrossRefGoogle Scholar
  10. 10.
    Takács, L.: On Erlang’s formula. Annal. Math. Stat. 40, 71–78 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Grigelionis, B.: Asymptotic expansions in the compound Poisson limit theorem. Acta Applicandae Math. 58(1), 125–134 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Iglehart, D.L.: Limit diffusion approximations for the many server queue and repairman problem. J. Appl. Prob. 2, 429–441 (1965)CrossRefzbMATHGoogle Scholar
  13. 13.
    Borovkov, A.A.: On limit laws for service processes in multi-channel systems. Siberian Math. J. 8, 746–763 (1967)CrossRefzbMATHGoogle Scholar
  14. 14.
    Whitt, W.: On the heavy-traffic limit theorem for \(GI/G/\infty \) queues. Adv. Appl. Prob. 14, 171–190 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Nazarov, A.A., Moiseev, A.N.: Analysis of an open Non-Markovian \(GI-(GI|\infty )^K\) queueing network with high-rate renewal arrival process. Prob. Inf. Trans. 49(2), 167–178 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Moiseev, A., Nazarov, A.: Queueing network \(MAP-(GI-\infty )^K\) with high-rate arrivals. Europ. J. Oper. Res. 254, 161–168 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Nazarov, A.A., Moiseeva, S.P., Morozova, A.S.: Analysis of infinite-server queueing system with feedback by the method of limiting decomposition (in Russian). Comput. Technol. 13(55), 88–92 (2008)zbMATHGoogle Scholar
  18. 18.
    Nazarov, A.A., Terpugov, A.F.: Queueing Theory - Tutorial. NTL, Tomsk (2010). (in Russian)Google Scholar
  19. 19.
    Nazarov, A.A., Moiseev, A.N.: Distributed system of processing of data of physical experiments. Rus. Phys. J. 57(7), 984–990 (2014)CrossRefGoogle Scholar
  20. 20.
    Moiseev, A., Nazarov, A.: Investigation of high intensive general flow. In: 4th International Conference Problems of Cybernetics and Informatics (PCI 2012), pp. 161–163. IEEE, Baku (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maria Shklennik
    • 1
    Email author
  • Svetlana Moiseeva
    • 1
  • Alexander Moiseev
    • 1
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations