Advertisement

On Steady-State Analysis of \( \left[ M|M|m|m+n \right] \) -Type Retrial Queueing Systems

  • Eugene Lebedev
  • Igor Makushenko
  • Hanna LivinskaEmail author
  • Iryna Usar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 800)

Abstract

In this paper we introduce a bivariate Markov process \(Q(t)=\left( Q_1(t)),Q_2(t) \right) \in \left\{ 0,1,...,m+n \right\} \times Z_+.\) The process \(Q(t), t\ge 0,\) can be seen as the joint process of the number of servers and waiting positions occupied and the number of customers in the orbit of a \( \left[ M|M|m|m+n \right] \) -type retrial queueing system. For the truncated model of Q(t) stationary probabilities are written in explicit vector-matrix form. The result obtained is used for stationary distribution calculation in the model of Q(t) with the infinite orbit and for construction of explicit formulas for stationary probabilities of a \(\left[ M|M|1|1+1 \right] \) -model.

Keywords

Retrial queueing system Truncated model Explicit formulas Stationary distribution 

References

  1. 1.
    Anisimov, V.V., Artalejo, J.R.: Analysis of Markov multiserver retrial queues with negative arrivals. Queuing Syst. 39, 157–182 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Artalejo, J.R.: Stationary analysis of the characteristics of the M/M/2 queue with constant repeated attempts. Opsearch 33, 83–95 (1996)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Artalejo, J.R., Gómez-Corral, A., Neuts, M.F.: Analysis of multiserver queues with constant retrial rate. Eur. J. Oper. Res. 135, 569–581 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Artalejo, J.R., Falin, G.I.: Standard and retrial queueing systems: a comparative analysis. Rev. Mat. Complut. 15, 101–129 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Artalejo, J.R., Gómez-Corral, A.: Retrial Queueing Systems. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Avrachenkov, K., Yechiali, U.: Retrial networks with finite buffers and their application to internet data traffic. Probab. Eng. Inf. Sci. 22, 519–536 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gómez-Corral, A., Ramalhoto, M.F.: The stationary distribution of a Markovian process arising in the theory of multiserver retrial queueing systems. Math. Comput. Model. 30, 141–158 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lebedev, E., Ponomarov, V.: Steady-state analysis of M/M/c/c-type retrial queueing systems with constant retrial rate. TOP 24, 693–704 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ramalhoto, M.F., Gómez-Corral, A.: Some decomposition formulae for M/M/r/r+d queues with constant retrial rate. Stoch. Models 14, 123–145 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Walrand, J.: An Introduction to Queueing Networks. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eugene Lebedev
    • 1
  • Igor Makushenko
    • 1
  • Hanna Livinska
    • 1
    Email author
  • Iryna Usar
    • 1
  1. 1.Applied Statistics DepartmentTaras Shevchenko National University of KyivKyivUkraine

Personalised recommendations