Dynamic Similarity Search over Encrypted Data with Low Leakage

  • Daniel HomannEmail author
  • Christian Göge
  • Lena Wiese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10547)


Though cloud databases offer advantages in terms of maintenance cost, they require encryption in order to protect confidential records. Specialized searchable encryption schemes are needed to provide the functionality of privacy preserving search on encrypted data. In many use cases, a search which also returns the correct documents when the search term was misspelled is very desirable. Therefore, we present a novel similarity searchable encryption scheme. Our scheme uses symmetric encryption primitives, is dynamic, i.e. allows the efficient addition and deletion of search terms and has sub-linear search cost. We prove that the leakage of our scheme is low and that it provides forward security. Our scheme is built by employing a new construction technique for similarity searchable encryption schemes. In this construction a searchable encryption scheme is used as storage layer for a similarity searchable encryption scheme.


Similarity search Fuzzy search Searchable encryption Symmetric encryption Cloud databases 



This work was funded by the DFG under grant number Wi 4086/2-2.


  1. 1.
    Boldyreva, A., Chenette, N.: Efficient fuzzy search on encrypted data. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 613–633. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46706-0_31 Google Scholar
  2. 2.
    Bösch, C., Hartel, P.H., Jonker, W., Peter, A.: A survey of provably secure searchable encryption. ACM CSUR. 47(2), 18:1–18:51 (2014)Google Scholar
  3. 3.
    Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS 2014 (2014)Google Scholar
  4. 4.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi: 10.1007/11496137_30 CrossRefGoogle Scholar
  5. 5.
    Chuah, M., Hu, W.: Privacy-aware bedtree based solution for fuzzy multi-keyword search over encrypted data. In: IEEE ICDCS 2011, pp. 273–281 (2011)Google Scholar
  6. 6.
    Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: CCS 2006, pp. 79–88 (2006)Google Scholar
  7. 7.
    Enron email dataset (2015).
  8. 8.
    Goh, E.: Secure indexes. IACR Cryptology ePrint Archive (2003)Google Scholar
  9. 9.
    Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22012-8_46 CrossRefGoogle Scholar
  10. 10.
    Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: ACM SIGSAC, pp. 310–320 (2014)Google Scholar
  11. 11.
    Hu, C., Han, L.: Efficient wildcard search over encrypted data. Int. J. Inf. Sec. 15(5), 539–547 (2016)CrossRefGoogle Scholar
  12. 12.
    Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39884-1_22 CrossRefGoogle Scholar
  13. 13.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: CCS, pp. 965–976 (2012)Google Scholar
  14. 14.
    Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted data. In: IEEE ICDE, pp. 1156–1167 (2012)Google Scholar
  15. 15.
    Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over encrypted data in cloud computing. In: INFOCOM, pp. 441–445 (2010)Google Scholar
  16. 16.
    Liu, C., Zhu, L., Li, L., Tan, Y.: Fuzzy keyword search on encrypted cloud storage data with small index. In: IEEE CCIS, pp. 269–273 (2011)Google Scholar
  17. 17.
    Örencik, C., Kantarcioglu, M., Savas, E.: A practical and secure multi-keyword search method over encrypted cloud data. In: IEEE CLOUD, pp. 390–397 (2013)Google Scholar
  18. 18.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE S&P, pp. 44–55 (2000)Google Scholar
  19. 19.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS (2014)Google Scholar
  20. 20.
    Strizhov, M., Ray, I.: Secure multi-keyword similarity search over encrypted cloud data supporting efficient multi-user setup. TDP 9(2), 131–159 (2016)Google Scholar
  21. 21.
    Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. In: ACM ASIA CCS, pp. 71–82 (2013)Google Scholar
  22. 22.
    Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In: INFOCOM, pp. 2112–2120 (2014)Google Scholar
  23. 23.
    Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured similarity search over outsourced cloud data. In: INFOCOM, pp. 451–459 (2012)Google Scholar
  24. 24.
    Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE TPDS 27(2), 340–352 (2016)Google Scholar
  25. 25.
    Yuan, X., Cui, H., Wang, X., Wang, C.: Enabling privacy-assured similarity retrieval over millions of encrypted records. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 40–60. Springer, Cham (2015). doi: 10.1007/978-3-319-24177-7_3 CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. In: USENIX, pp. 707–720 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für InformatikUniversität GöttingenGöttingenGermany

Personalised recommendations