Skip to main content

Mechanisms of Action and Immunomodulation by IVIg

  • Chapter
  • First Online:
Antibody Therapy
  • 1282 Accesses

Abstract

Intravenous immunoglobulin (IVIg) has been e1ectively used as a replacement product for those deficient in IgG as well as for treating a number of autoimmune syndromes. Although the precise mechanism of action of IVIg as an immunomodulatory agent has been elusive, many theories over the years have been postulated. These theories include mononuclear phagocytic system blockade, autoantibody neutralization, increased clearance of pathogenic autoantibodies through the neonatal Fc receptor (FcRn), complement neutralization, modulation of inflammatory and/or anti-inflammatory cytokines, programmed cell death, anti-inflammatory effects mediated through the inhibitory Fc receptor (FcγRIIB), activating Fc receptor-dependent dendritic cell modulation, induction of T regulatory cells and other mechanisms. Some of the key attributes of IVIg which could contribute to some of these mechanisms have included effects mediated through the Fab region of IgG, while others have been through the Fc region of IVIg. The presence of sugars or glycans on the Fc region have been considered by some to be important, while other work has pointed to a major role for IgG dimers or immune complexes as mediating IVIg anti-inflammatory activity. This review will discuss our current understanding of the mechanism of action of IVIg on its immunomodulatory properties in autoimmunity with an emphasis from work performed using murine models of immune thrombocytopenia (ITP). Finally, we will discuss some recent advances in recombinant IVIg alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aloulou M, Ben Mkaddem S, Biarnes-Pelicot M, Boussetta T, Souchet H, Rossato E, Benhamou M, Crestani B, Zhu Z, Blank U, Launay P, Monteiro RC. IgG1 and IVIg induce inhibitory ITAM signaling through FcγRIII controlling inflammatory responses. Blood. 2012;119(13):3084–96.

    Article  CAS  PubMed  Google Scholar 

  • Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol. 2010;30(S1):9–14.

    Article  Google Scholar 

  • Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature. 2011;475(7354):110–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam R, Burack WR, Segel GB, McVey M, Spence SA, Semple JW. Intravenous immunoglobulin treatment of spleen cells from patients with immune thrombocytopenia significantly increases the percentage of myeloid-derived suppressor cells. Br J Haematol. 2017. [Epub ahead of print].

    Google Scholar 

  • Aubin E, Lemieux R, Bazin R. Absence of cytokine modulation following therapeutic infusion of intravenous immunoglobulin or anti-red blood cell antibodies in a mouse model of immune thrombocytopenic purpura. Br J Haematol. 2007;136(6):837–43.

    Article  CAS  PubMed  Google Scholar 

  • Aukrust P, Frøland SS, Liabakk NB, Müller F, Nordøy I, Haug C, Espevik T. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood. 1994;84(7):2136–43.

    CAS  PubMed  Google Scholar 

  • Barbano G, Saleh MN, Mori PG, LoBuglio AF, Shaw DR. Effect of intravenous gammaglobulin on circulating and platelet-bound antibody in immune thrombocytopenia. Blood. 1989;73(3):662–5.

    CAS  PubMed  Google Scholar 

  • Berchtold P, Dale GL, Tani P, McMillan R. Inhibition of autoantibody binding to platelet glycoprotein IIb/IIIa by anti-idiotypic antibodies in intravenous gammaglobulin. Blood. 1989;74(7):2414–7.

    CAS  PubMed  Google Scholar 

  • Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 2003;18(4):573–81.

    Article  CAS  PubMed  Google Scholar 

  • Burdach SE, Evers KG, Geursen RG. Treatment of acute idiopathic thrombocytopenic purpura of childhood with intravenous immunoglobulin G: comparative efficacy of 7S and 5S preparations. J Pediatr. 1986;109(5):770–5.

    Article  CAS  PubMed  Google Scholar 

  • Chow L, Aslam R, Speck ER, Kim M, Cridland N, Webster ML, Chen P, Sahib K, Ni H, Lazarus AH, Garvey MB, Freedman J, Semple JW. A murine model of severe immune thrombocytopenia is induced by antibody- and CD8+ T cell-mediated responses that are differentially sensitive to therapy. Blood. 2010;115(6):1247–53.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson SB, Bussel JB, Kimberly RP, Valinsky JE, Nachman RL, Unkeless JC. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc gamma-receptor antibody. N Engl J Med. 1986;314(19):1236–9.

    Article  CAS  PubMed  Google Scholar 

  • Cooper N, Heddle NM, Haas M, Reid ME, Lesser ML, Fleit HB, Woloski BMR, Bussel JB. Intravenous (IV) anti-D and IV immunoglobulin achieve acute platelet increases by different mechanisms: modulation of cytokine and platelet responses to IV anti-D by FcgammaRIIa and FcgammaRIIIa polymorphisms. Br J Haematol. 2004;124(4):511–8.

    Article  CAS  PubMed  Google Scholar 

  • Crow AR, Lazarus AH. The mechanisms of action of intravenous immunoglobulin and polyclonal anti-d immunoglobulin in the amelioration of immune thrombocytopenic purpura: what do we really know? Transfus Med Rev. 2008;22(2):103–16.

    Article  PubMed  Google Scholar 

  • Crow AR, Lazarus AH. Mechanistic properties of intravenous immunoglobulin in murine immune thrombocytopenia: support for FcγRIIB falls by the wayside. Semin Hematol. 2016;53:S20–2.

    Article  PubMed  Google Scholar 

  • Crow AR, Song S, Semple JW, Freedman J, Lazarus AH. IVIg inhibits reticuloendothelial system function and ameliorates murine passive-immune thrombocytopenia independent of anti-idiotype reactivity. Br J Haematol. 2001;115(3):679–86.

    Article  CAS  PubMed  Google Scholar 

  • Crow AR, Song S, Semple JW, Freedman J, Lazarus AH. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood. 2007;109(1):155–8.

    Article  CAS  PubMed  Google Scholar 

  • Crow AR, Brinc D, Lazarus AH. New insight into the mechanism of action of IVIg: the role of dendritic cells. J Thromb Haemost. 2009;7:245–8.

    Article  CAS  PubMed  Google Scholar 

  • Crow AR, Suppa SJ, Chen X, Mott PJ, Lazarus AH. The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia. Blood. 2011;118(24):6403–6.

    Article  CAS  PubMed  Google Scholar 

  • Czajkowsky DM, Andersen JT, Fuchs A, Wilson TJ, Mekhaiel D, Colonna M, He J, Shao Z, Mitchell DA, Wu G, Dell A, Haslam S, Lloyd KA, Moore SC, Sandlie I, Blundell PA, Pleass RJ. Developing the IVIG biomimetic, Hexa-Fc, for drug and vaccine applications. Sci Rep. 2015;5(u):9526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehr J, Hofmann V, Kappeler U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N Engl J Med. 1982;306(21):1254–8.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo CA, Drohomyrecky PC, McCarthy SDS, Leontyev D, Ma X-Z, Branch DR, Dunn SE. Optimal attenuation of experimental autoimmune encephalomyelitis by intravenous immunoglobulin requires an intact interleukin-11 receptor. PLoS One. 2014;9(7):e101947. Edited by O. Aktas.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesan LP, Kim J, Wu Y, Mohanty S, Phillips GS, Birmingham DJ, Robinson JM, Anderson CL. FcγRIIb on liver sinusoidal endothelium clears small immune complexes. J Immunol. 2012;189(10):4981–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen RJ, Balthasar JP. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood. 2002;100(6):2087–93.

    CAS  PubMed  Google Scholar 

  • Imbach P, Barandun S, d’Apuzzo V, Baumgartner C, Hirt A, Morell A, Rossi E, Schöni M, Vest M, Wagner HP. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet (Lond Engl). 1981;1(8232):1228–31.

    Article  CAS  Google Scholar 

  • Kapur R, Aslam R, Kim M, Guo L, Ni H, Segel GB, Semple JW. Thymic-derived tolerizing dendritic cells are upregulated in the spleen upon treatment with intravenous immunoglobulin in a murine model of immune thrombocytopenia. Platelets. 2016;28:1–4.

    Google Scholar 

  • Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell. 1996;87(5):811–22.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kimberly RP. Targeting the Fc receptor in autoimmune disease. Expert Opin Ther Targets. 2014;18(3):335–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhao M, Hilario-Vargas J, Prisayanh P, Warren S, Diaz LA, Roopenian DC, Liu Z. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest. 2005;115(12):3440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, van der Wal DE, Zhu G, Xu M, Yougbare I, Ma L, Vadasz B, Carrim N, Grozovsky R, Ruan M, Zhu L, Zeng Q, Tao L, Zhai Z, Peng J, Hou M, Leytin V, Freedman J, Hoffmeister KM, Ni H. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun. 2015;6:7737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loubaki L, Chabot D, Paré I, Drouin M, Bazin R. MiR-146a potentially promotes IVIg-mediated inhibition of TLR4 signaling in LPS-activated human monocytes. Immunol Lett. 2017;185:64–73.

    Article  CAS  PubMed  Google Scholar 

  • Massoud AH, Kaufman GN, Xue D, Béland M, Dembele M, Piccirillo CA, Mourad W, Mazer BD. Peripherally generated foxp3(+) regulatory T cells mediate the immunomodulatory effects of IVIg in allergic airways disease. J Immunol. 2017;198(7):2760–71.

    Article  CAS  PubMed  Google Scholar 

  • Niknami M, Wang M-X, Nguyen T, Pollard JD. Beneficial effect of a multimerized immunoglobulin Fc in an animal model of inflammatory neuropathy (experimental autoimmune neuritis). J Peripher Nerv Syst. 2013;18(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  • Richard A, Corvol J-C, Debs R, Reach P, Tahiri K, Carpentier W, Gueguen J, Guillemot V, Labeyrie C, Adams D, Viala K, Cohen Aubart F. Transcriptome analysis of peripheral blood in chronic inflammatory demyelinating polyradiculoneuropathy patients identifies TNFR1 and TLR pathways in the IVIg response. Medicine. 2016;95(19):e3370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter C, Bobylev I, Lehmann HC. Chronic inflammatory demyelinating polyneuropathy (CIDP): change of serum IgG dimer levels during treatment with intravenous immunoglobulins. J Neuroinflammation. 2015;12(1):148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  • Salama A, Mueller-Eckhardt C, Kiefel V. Effect of intravenous immunoglobulin in immune thrombocytopenia. Lancet (Lond Engl). 1983;2(8343):193–5.

    Article  CAS  Google Scholar 

  • Salama A, Kiefel V, Amberg R, Mueller-Eckhardt C. Treatment of autoimmune thrombocytopenic purpura with rhesus antibodies (anti-Rh0(D)). Blut. 1984;49(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  • Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176–89.

    Article  CAS  PubMed  Google Scholar 

  • Siragam V, Brinc D, Crow AR, Song S, Freedman J, Lazarus AH. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest. 2005;115(1):155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med. 2006;12(6):688–92.

    Article  CAS  PubMed  Google Scholar 

  • Teeling JL, Jansen-Hendriks T, Kuijpers TW, de Haas M, van de Winkel JG, Hack CE, Bleeker WK. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood. 2001;98(4):1095–9.

    Article  CAS  PubMed  Google Scholar 

  • Tovo PA, Miniero R, Fiandino G, Saracco P, Messina M. Fc-depleted vs intact intravenous immunoglobulin in chronic ITP. J Pediatr. 1984;105(4):676–7.

    Article  CAS  PubMed  Google Scholar 

  • Trinath J, Hegde P, Sharma M, Maddur MS, Rabin M, Vallat J-M, Magy L, Balaji KN, Kaveri SV, Bayry J. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood. 2013;122(8):1419–27.

    Article  CAS  PubMed  Google Scholar 

  • von Gunten S, Shoenfeld Y, Blank M, Branch DR, Vassilev T, Käsermann F, Bayry J, Kaveri S, Simon H-U. IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol. 2014;14(5):349.

    Article  Google Scholar 

  • Webster ML, Sayeh E, Crow M, Chen P, Nieswandt B, Freedman J, Ni H. Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by antiplatelet GPIIbIIIa versus GPIbalpha antibodies. Blood. 2006;108(3):943–6.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Menard M, Prechl J, Bhakta V, Sheffield WP, Lazarus AH. Monovalent Fc receptor blockade by an anti-Fc receptor/albumin fusion protein ameliorates murine ITP with abrogated toxicity. Blood. 2016;127(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  • Zuercher AW, Spirig R, Baz Morelli A, Käsermann F. IVIG in autoimmune disease - potential next generation biologics. Autoimmun Rev. 2016;15(8):781–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Lazarus PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazarus, A.H. (2018). Mechanisms of Action and Immunomodulation by IVIg. In: Imbach, P. (eds) Antibody Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-68038-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68038-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68037-8

  • Online ISBN: 978-3-319-68038-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics