Skip to main content

Characteristic, Counting, and Representation Functions Characterized

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory II (CANT 2015, CANT 2016)

Abstract

Given a set A of natural numbers, i.e., nonnegative integers, there are three distinctive functions attached to it, each of which completely determines A. These are the characteristic function \(\chi _{A}(n)\) which is equal to 1 or 0 according as the natural number n lies or does not lie in A, the counting function A(n) which gives the number of elements a of A satisfying \(a\le n\), and the representation function \(r_{A}(n)\) which counts the ordered pairs (ab) of elements \(a, b\in A\) such that \(a+b=n\). We establish direct relations between these three functions. In particular, we express each one of them in terms of each other one. We also characterize the representation functions by an intrinsic recursive relation which is a necessary and sufficient condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-G. Chen, M. Tang, Partitions of natural numbers with the same representation functions. J. Number Theory 129(11), 2689–2695 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Cilleruelo, M.B. Nathanson, Dense sets of integers with prescribed representation functions. European J. Comb. 34(8), 1297–1306 (2013)

    Google Scholar 

  3. A. Dubickas, A basis of finite and infinite sets with small representation function. Electron. J. Comb. 19(1), Paper 6, 16 pp (2012)

    Google Scholar 

  4. A. Dubickas, On the supremum of the representation function of a sumset. Quaest. Math. 37(1), 1–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Erdős, W.H.J. Fuchs, On a problem of additive number theory. J. Lond. Math. Soc. 31, 67–73 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Erdős, P. Turán, On a problem of Sidon in additive number theory. J. Lond. Math. Soc. 16, 212–215 (1941)

    Article  MATH  Google Scholar 

  7. G. Grekos, L. Haddad, C. Helou, J. Pihko, On the Erdős-Turán conjecture. J. Number Theory 102, 339–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Grekos, L. Haddad, C. Helou, J. Pihko, The class of Erdős-Turán sets. Acta Arith. 117, 81–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Grekos, L. Haddad, C. Helou, J. Pihko, Representation functions, Sidon sets and bases. Acta Arith. 130(2), 149–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Grekos, L. Haddad, C. Helou, J. Pihko, Supremum of representation functions. Integers 11, A30, 14 pp (2011)

    Google Scholar 

  11. H. Halberstam, K.F. Roth, Sequences (Clarendon Press, Oxford, 1966)

    MATH  Google Scholar 

  12. J. Lee, Infinitely often dense bases for the integers with a prescribed representation function. Integers 10(A24), 299–307 (2010)

    MathSciNet  MATH  Google Scholar 

  13. V.F. Lev, Reconstructing integer sets from their representation functions. Electron. J. Comb. 11(1), Research Paper 78, 6 pp (2004)

    Google Scholar 

  14. M.B. Nathanson, Representation functions of sequences in additive number theory. Proc. Am. Math. Soc. 72, 16–20 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.B. Nathanson, in The inverse problem for representation functions of additive bases. Number Theory. (Springer, New York, 2004), pp. 253–262

    Google Scholar 

  16. M.B. Nathanson, Representation functions of additive bases for abelian semigroups. Int. J. Math. Math. Sci. 29–32, 1589–1597 (2004)

    Google Scholar 

  17. M.B. Nathanson, Every function is the representation function of an additive basis for the integers. Port. Math. (N.S.) 62(1), 55–72 (2005)

    Google Scholar 

  18. M.B. Nathanson, Inverse problems for representation functions in additive number theory. Surveys in number theory, 89–117, Dev. Math. 17 (Springer, New York, 2008)

    Google Scholar 

  19. C. Sándor, Range of bounded additive representation functions. Period. Math. Hungar. 42(1–2), 169–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Sándor, Partitions of natural numbers and their representation functions. Integers 4, A18, 5 pp (2004)

    Google Scholar 

  21. A. Sárközy, V.T. Sós, On additive representation functions. The mathematics of Paul Erdős, I, 129–150, Algorithms Comb. 13 (Springer, Berlin, 1997)

    Google Scholar 

  22. M. Tang, Partitions of the set of natural numbers and their representation functions. Discrete Math. 308(12), 2614–2616 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Tang, Dense sets of integers with a prescribed representation function. Bull. Aust. Math. Soc. 84(1), 40–43 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Helou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Helou, C. (2017). Characteristic, Counting, and Representation Functions Characterized. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory II. CANT CANT 2015 2016. Springer Proceedings in Mathematics & Statistics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-68032-3_9

Download citation

Publish with us

Policies and ethics