Skip to main content

Benford Behavior of Generalized Zeckendorf Decompositions

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory II (CANT 2015, CANT 2016)

Abstract

We prove connections between Zeckendorf decompositions and Benford’s law. Recall that if we define the Fibonacci numbers by \(F_1 = 1, F_2 = 2\), and \(F_{n+1} = F_n + F_{n-1}\), every positive integer can be written uniquely as a sum of nonadjacent elements of this sequence; this is called the Zeckendorf decomposition, and similar unique decompositions exist for sequences arising from recurrence relations of the form \(G_{n+1}=c_1G_n+\cdots +c_LG_{n+1-L}\) with \(c_i\) positive and some other restrictions. Additionally, a set \(S \subset \mathbb {Z}\) is said to satisfy Benford’s law base 10 if the density of the elements in S with leading digit d is \(\log _{10}{(1+\frac{1}{d})}\); in other words, smaller leading digits are more likely to occur. We prove that as \(n\rightarrow \infty \) for a randomly selected integer m in \([0, G_{n+1})\) the distribution of the leading digits of the summands in its generalized Zeckendorf decomposition converges to Benford’s law almost surely. Our results hold more generally: One obtains similar theorems to those regarding the distribution of leading digits when considering how often values in sets with density are attained in the summands in the decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(x>0\) and \(B>1\) we may uniquely write x as \(S_B(x) \cdot B^{k_B(x)}\), where \(S_B(x) \in [1,B)\) is the significand of x and \(k_B(x)\) is an integer.

  2. 2.

    Given a data set \(\{x_n\}\), let \(y_n = \log _{10} x_n \bmod 1\). If \(\{y_n\}\) is equidistributed modulo 1 then in the limit the percentage of the time it is in \([\alpha , \beta ] \subset [0,1]\) is just \(\beta -\alpha \). For example, to restrict to significands of d take \(\alpha = \log _{10} d\) and \(\beta = \log _{10} (d+1)\).

  3. 3.

    For example, in the limit one-third of the Fibonacci numbers are even. To see this we look at the sequence modulo 2 and find it is \(1, 0, 1, 1, 0, 1, 1, 0, 1, \dots \); it is thus periodic with period 3 and one-third of the numbers are even.

References

  1. H. Alpert, Differences of multiple fibonacci numbers, Int. Electron. J. Combinat. Num. Theor. 9, 745–749 (2009)

    Google Scholar 

  2. O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S.J. Miller, P. Tosteson, The average gap distribution for generalized Zeckendorf decompositions. Fibonacci Quart. 51, 13–27 (2013)

    MathSciNet  MATH  Google Scholar 

  3. F. Benford, The law of anomalous numbers, Proc. Am. Philos. Soc. 78, 551–572 (1938), https://www.jstor.org/stable/984802

  4. A. Berger, T. Hill, An Introduction to Benford’s Law, (Princeton University Press, 2015)

    Google Scholar 

  5. A. Best, P. Dynes, X. Edelsbrunner, B. McDonald, S.J. Miller, K. Tor, C. Turnage-Butterbaugh, M. Weinstein, Benford behavior of Zeckendorf decompositions. Fibonacci Quart. 52(5), 35–46 (2014)

    MathSciNet  MATH  Google Scholar 

  6. J. Brown, R. Duncan, Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences, Fibonacci Quart. 8, 482–486 (1970), https://www.mathstat.dal.ca/FQ/Scanned/8-5/brown.pdf

  7. M. Catral, P. Ford, P. Harris, S.J. Miller, D. Nelson, Generalizing Zeckendorf’s theorem: the Kentucky sequence. Fibonacci Quart. 52(5), 68–90 (2014)

    MathSciNet  Google Scholar 

  8. M. Catral, P. Ford, P. Harris, S.J. Miller, D. Nelson, Legal decompositions arising from non-positive linear recurrences. Fibonacci Quart. 54(4), 3448–3465 (2016)

    MathSciNet  Google Scholar 

  9. D.E. Daykin, Representation of natural numbers as sums of generalized fibonacci numbers. J. London Math. Soc. 35, 143–160 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Demontigny, T. Do, A. Kulkarni, S.J. Miller, D. Moon, U. Varma, Generalizing Zeckendorf’s theorem to \(f\)-decompositions. J. Num. Theor. 141, 136–158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Demontigny, T. Do, A. Kulkarni, S.J. Miller, U. Varma, A generalization of fibonacci far-difference representations and Gaussian behavior. Fibonacci Quart. 52(3), 247–273 (2014)

    MathSciNet  MATH  Google Scholar 

  12. M. Drmota, J. Gajdosik, The distribution of the sum-of-digits function. J. Théor. Nombrés Bordeaux 10(1), 17–32 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of-digits function. J. Num. Theor. 62(1), 19–38 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Filipponi, P.J. Grabner, I. Nemes, A. Pethö, R.F. Tichy, Corrigendum to: generalized Zeckendorf expansions. Appl. Math. Lett. 7(6), 25–26 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.J. Grabner, R.F. Tichy, Contributions to digit expansions with respect to linear recurrences. J. Num. Theor. 36(2), 160–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.J. Grabner, R.F. Tichy, I. Nemes, A. Pethö, Generalized Zeckendorf expansions. Appl. Math. Lett. 7(2), 25–28 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Hill, The first-digit phenomenon. Am. Scient. 86, 358–363 (1996)

    Article  Google Scholar 

  18. T. Hill, A statistical derivation of the significant-digit law. Statist. Sci. 10, 354–363 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. T. J. Keller, Generalizations of Zeckendorf’s theorem, Fibonacci Quart. 101(special issue on representations), 95–102 (1972)

    Google Scholar 

  20. M. Kologlu, G. Kopp, S.J. Miller, Y. Wang, On the number of summands in Zeckendorf decompositions. Fibonacci Quart. 49(2), 116–130 (2011)

    MathSciNet  MATH  Google Scholar 

  21. T. Lengyel, A counting based proof of the generalized Zeckendorf’s theorem. Fibonacci Quart. 44(4), 324–325 (2006)

    MathSciNet  MATH  Google Scholar 

  22. S. J. Miller (ed.), Benford’s Law: Theory and Applications, (Princeton University Press, 2015)

    Google Scholar 

  23. S.J. Miller, R. Takloo-Bighash, An Invitation to Modern Number Theory (Princeton University Press, Princeton, NJ, 2006)

    MATH  Google Scholar 

  24. S.J. Miller, Y. Wang, From fibonacci numbers to central limit type theorems, J. Combinator. Theor. Series A 119

    Google Scholar 

  25. S.J. Miller, Y. Wang, Gaussian Behavior in Generalized Zeckendorf Decompositions, in Combinatorial and Additive Number Theory, CANT 2011 and 2012 ed. by Melvyn B. Nathanson, Springer Proceedings in Mathematics & Statistics (2014), pp. 159–173, https://arXiv.org/pdf/1107.2718v1

  26. S. Newcomb, Note on the frequency of use of the different digits in natural numbers. Amer. J. Math. 4, 39–40 (1881)

    Article  MathSciNet  MATH  Google Scholar 

  27. R.A. Raimi, The first digit problem. Amer. Math. Monthly 83(7), 521–538 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Steiner, Parry expansions of polynomial sequences, Integers 2 (2002), Paper A14

    Google Scholar 

  29. W. Steiner, The joint distribution of Greedy and lazy fibonacci expansions. Fibonacci Quart. 43, 60–69 (2005)

    MathSciNet  MATH  Google Scholar 

  30. L. Washington, Benford’s law for fibonacci and Lucas numbers, Fibonacci Quart. 19(2), 175–177 (1981), http://www.fq.math.ca/Scanned/19-2/washington.pdf

  31. E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas. Bulletin de la Société Royale des Sciences de Liége 41, 179–182 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was conducted as part of the 2014 SMALL REU program at Williams College and was supported by NSF grants DMS1265673, DMS1561945, DMS1347804, Williams College, and the Clare Boothe Luce Program of the Henry Luce Foundation. It is a pleasure to thank them for their support, and the participants at SMALL and at the 16th International Conference on Fibonacci Numbers and their Applications for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Best, A. et al. (2017). Benford Behavior of Generalized Zeckendorf Decompositions. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory II. CANT CANT 2015 2016. Springer Proceedings in Mathematics & Statistics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-68032-3_3

Download citation

Publish with us

Policies and ethics