Skip to main content

Sumsets Contained in Sets of Upper Banach Density 1

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory II (CANT 2015, CANT 2016)

Abstract

Every set A of positive integers with upper Banach density 1 contains an infinite sequence of pairwise disjoint subsets \((B_i)_{i=1}^{\infty }\) such that \(B_i\) has upper Banach density 1 for all \(i \in \mathbf {N}\) and \(\sum _{i\in I} B_i \subseteq A\) for every nonempty finite set I of positive integers.

Supported in part by a grant from the PSC-CUNY Research Award Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Di Nasso, An elementary proof of Jin’s theorem with a bound. Electron. J. Combin. 21(2), Paper 2.37, 7 (2014)

    Google Scholar 

  2. M. Di Nasso, Embeddability properties of difference sets, Integers 14, Paper No. A 27, 24 (2014)

    Google Scholar 

  3. M. Di Nasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, K. Mahlburg, On a sumset conjecture of Erdős. Canad. J. Math. 67(4), 795–809 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.L. Gromov, Colorful categories. Uspekhi Mat. Nauk 70(4), 424, 3–76 (2015)

    Google Scholar 

  5. N. Hegyvári, On the dimension of the Hilbert cubes. J. Num. Theor. 77(2), 326–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Hegyvári, On additive and multiplicative Hilbert cubes. J. Combin. Theor. Ser. A 115(2), 354–360 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Hindman, Ultrafilters and combinatorial number theory, Number theory, Carbondale, Proceedings of Southern Illinois Conference, Southern Illinois University, Carbondale, Ill., Lecture Notes in Mathematics, vol. 751. Springer, Berlin 1979, 119–184 (1979)

    Google Scholar 

  8. R. Jin, Standardizing nonstandard methods for upper Banach density problems, Unusual Applications of Number Theory, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 109–124 (2004)

    Google Scholar 

  9. M.B. Nathanson, Sumsets contained in infinite sets of integers. J. Combin. Theor. Ser. A 28(2), 150–155 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvyn B. Nathanson .

Editor information

Editors and Affiliations

Appendix: Subadditivity and Limits

Appendix: Subadditivity and Limits

A real-valued arithmetic function f is subadditive if

$$\begin{aligned} f(n_1+n_2) \le f(n_1) + f(n_2) \end{aligned}$$
(4)

for all \(n_1,n_2 \in \mathbf {N}\).

The following result is sometimes called Fekete’s lemma.

Lemma 2

If f is a subadditive arithmetic function, then \(\lim _{n\rightarrow \infty } f(n)/n\) exists, and

$$ \lim _{n\rightarrow \infty } \frac{f(n)}{n} = \inf _{n\in \mathbf {N}} \frac{f(n)}{n}. $$

Proof

It follows by induction from inequality (4) that

$$ f(n_1+\cdots + n_q) \le f(n_1) + \cdots + f(n_q) $$

for all \(n_1,\ldots , n_q \in \mathbf {N}\). Let \(f(0) = 0\). Fix a positive integer d. For all \(q,r \in \mathbf {N}_0\), we have

$$ f(qd+r) \le qf(d)+ f(r). $$

By the division algorithm, every nonnegative integer n can be represented uniquely in the form \(n = qd+r\), where \(q \in \mathbf {N}_0\) and \(r \in [0,d-1]\). Therefore,

$$ \frac{f(n)}{n} = \frac{f(qd+r)}{n} \le \frac{qf(d)}{qd} + \frac{f(r)}{n} = \frac{f(d)}{d} + \frac{f(r)}{n}. $$

Because the set \(\{f(r):r\in [0,d-1]\}\) is bounded, it follows that

$$ \limsup _{n\rightarrow \infty } \frac{f(n)}{n} \le \limsup _{n\rightarrow \infty } \left( \frac{f(d)}{d} + \frac{f(r)}{n} \right) = \frac{f(d)}{d} $$

for all \(d \in \mathbf {N}\), and so

$$ \limsup _{n\rightarrow \infty } \frac{f(n)}{n} \le \inf _{d\in \mathbf {N}} \frac{f(d)}{d} \le \liminf _{d \rightarrow \infty } \frac{f(d)}{d} = \liminf _{n\rightarrow \infty } \frac{f(n)}{n}. $$

This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nathanson, M.B. (2017). Sumsets Contained in Sets of Upper Banach Density 1. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory II. CANT CANT 2015 2016. Springer Proceedings in Mathematics & Statistics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-68032-3_16

Download citation

Publish with us

Policies and ethics