Skip to main content

Averaging with Exogenous Inputs and Electrical Networks

  • Chapter
  • First Online:
Introduction to Averaging Dynamics over Networks

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 472))

Abstract

The dynamical models analyzed so far, with the exception of the noisy consensus models treated in Chap. 4, are autonomous systems with no input signals: Information enters the system only through the initial condition. Instead, there are a variety of different situations where it is natural to consider consensus models driven by exogenous input signals, including opinion dynamics in the presence of stubborn agents that do not modify their opinion, rendezvous problems with leader robots, and estimation algorithms based on pairwise measurements. A very useful tool to analyze these models is thinking of the graph as an electrical circuit with the exogenous signals interpreted as input currents or as nodes kept at a fixed voltage. In this chapter, we will first review the basic theory of electrical networks and their classical connection with reversible stochastic matrices: Sect. 5.1 concentrates on Green matrices and harmonic functions, while Sect. 5.2 is devoted to effective resistances. Afterward, we apply these tools to averaging dynamics with stubborn agents in Sect. 5.3 and to the problem of estimation from relative measurements in Sect. 5.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acemoglu, D., Como, G., Fagnani, F., Ozdaglar, A.: Opinion fluctuations and disagreement in social networks. Math. Oper. Res. 38(1), 1–27 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bamieh, B., Jovanovic, M.R., Mitra, P., Patterson, S.: Coherence in large-scale networks: dimension-dependent limitations of local feedback. IEEE Trans. Autom. Control 57(9), 2235–2249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barooah, P., Hespanha, J.P.: Estimation from relative measurements: algorithms and scaling laws. IEEE Control Syst. Mag. 27(4), 57–74 (2007)

    Article  Google Scholar 

  4. Barooah, P., Hespanha, J.P.: Estimation from relative measurements: electrical analogy and large graphs. IEEE Trans. Signal Process. 56(6), 2181–2193 (2008)

    Article  MathSciNet  Google Scholar 

  5. Barooah, P., Hespanha, J.P.: Error scaling laws for linear optimal estimation from relative measurements. IEEE Trans. Inf. Theory 55(12), 5661–5673 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bolognani, S., Del Favero, S., Schenato, L., Varagnolo, D.: Consensus-based distributed sensor calibration and least-square parameter identification in WSNs. Int. J. Robust Nonlinear Control 20(2), 176–193 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carron, A., Todescato, M., Carli, R., Schenato, L.: An asynchronous consensus-based algorithm for estimation from noisy relative measurements. IEEE Trans. Control Network Syst. 1(3), 283–295 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Comput. Complex. 6(4), 312–340 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clark, A., Bushnell, L., Poovendran, R.: A supermodular optimization framework for leader selection under link noise in linear multi-agent systems. IEEE Trans. Autom. Control 59(2), 283–296 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Como, G., Fagnani, F.: From local averaging to emergent global behaviors: the fundamental role of network interconnections. Syst. Control Lett. 95, 70–76 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Carus Monographs, Mathematical Association of America (1984)

    Google Scholar 

  12. Fitch, K., Leonard, N.E.: Joint centrality distinguishes optimal leaders in noisy networks. IEEE Trans. Control Network Syst. 3(4), 366–378 (2016)

    Google Scholar 

  13. Frasca, P., Ishii, H., Ravazzi, C., Tempo, R.: Distributed randomized algorithms for opinion formation, centrality computation and power systems estimation. Eur. J. Control 24, 2–13 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frasca, P., Ravazzi, C., Tempo, R., Ishii, H.: Gossips and prejudices: ergodic randomized dynamics in social networks. In: IFAC Workshop on Estimation and Control of Networked Systems, Koblenz, Germany, pp. 212–219, September 2013

    Google Scholar 

  15. Freris, N.M., Zouzias, A.: Fast distributed smoothing of relative measurements. In: IEEE Conference on Decision and Control, Maui, HI, USA, pp. 1411–1416, December 2012

    Google Scholar 

  16. Friedkin, N.E., Johnsen, E.C.: Social influence networks and opinion change. In: Lawler, E.J., Macy, M.W. (eds.) Advances in Group Processes, vol. 16, pp. 1–29. JAI Press (1999)

    Google Scholar 

  17. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Giridhar, A., Kumar, P.R.: Distributed clock synchronization over wireless networks: algorithms and analysis. In: IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 4915–4920, December 2006

    Google Scholar 

  19. Ji, M., Ferrari-Trecate, G., Egerstedt, M., Buffa, A.: Containment control in mobile networks. IEEE Trans. Autom. Control 53(8), 1972–1975 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society (2009)

    Google Scholar 

  21. Lin, F., Fardad, M., Jovanovic, M.R.: Algorithms for leader selection in stochastically forced consensus networks. IEEE Trans. Autom. Control 59(7), 1789–1802 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lovisari, E., Garin, F., Zampieri, S.: Resistance-based performance analysis of the consensus algorithm over geometric graphs. SIAM J. Control Optim. 51(5), 3918–3945 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91(2), 028701 (2003)

    Article  Google Scholar 

  24. Osting, B., Brune, C., Osher, S.J.: Optimal data collection for improved rankings expose well-connected graphs. J. Mach. Learn. Res. 15, 2981–3012 (2014)

    MATH  MathSciNet  Google Scholar 

  25. Parsegov, S.E., Proskurnikov, A.V., Tempo, R., Friedkin, N.E.: Novel multidimensional models of opinion dynamics in social networks. IEEE Trans. Autom. Control 62(5), 2270–2285 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  26. Proskurnikov, A.V., Tempo, R.: A tutorial on modeling and analysis of dynamic social networks. Part I. In: Annual Reviews in Control, pp. 65–79, March 2017

    Google Scholar 

  27. Ravazzi, C., Frasca, P., Ishii, H., Tempo, R.: A distributed randomized algorithm for relative localization in sensor networks. In: European Control Conference, Zürich, Switzerland, pp. 1776–1781, July 2013

    Google Scholar 

  28. Ravazzi, C., Frasca, P., Tempo, R., Ishii, H.: Ergodic randomized algorithms and dynamics over networks. IEEE Trans. Control Network Syst. 2(1), 78–87 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rossi, W.S., Frasca, P.: The harmonic influence in social networks and its distributed computation by message passing (2016). arXiv:1611.02955

  30. Rossi, W.S., Frasca, P., Fagnani, F.: Transient and limit performance of distributed relative localization. In: IEEE Conference on Decision and Control, Maui, HI, USA, pp. 2744–2748, December 2012

    Google Scholar 

  31. Rossi, W.S., Frasca, P., Fagnani, F.: Average resistance of toroidal graphs. SIAM J. Control Optim. 53(4), 2541–2557 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rossi, W.S., Frasca, P., Fagnani, F.: Distributed estimation from relative and absolute measurements. IEEE Trans. Autom. Control, PP(99), 1, (2017). https://doi.org/10.1109/TAC.2017.2661400

  33. Siami, M., Motee, N.: Fundamental limits and tradeoffs on disturbance propagation in linear dynamical networks. IEEE Trans. Autom. Control 61(12), 4055–4062 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vassio, L., Fagnani, F., Frasca, P., Ozdaglar, A.: Message passing optimization of harmonic influence centrality. IEEE Trans. Control Network Syst. 1(1), 109–120 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 1–30 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Frasca .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagnani, F., Frasca, P. (2018). Averaging with Exogenous Inputs and Electrical Networks. In: Introduction to Averaging Dynamics over Networks. Lecture Notes in Control and Information Sciences, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-68022-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68022-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68021-7

  • Online ISBN: 978-3-319-68022-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics