Skip to main content

Averaging in Time-Varying Networks

  • Chapter
  • First Online:
  • 726 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 472))

Abstract

This chapter studies averaging dynamics in which the update matrix and, possibly, the underlying graph may be different at each time step. This extension is particularly important for the applications. Indeed, in realistic models of sensor and robotic networks, units, and links may be occasionally off due to environmental reasons or for energy saving purposes. Similarly, social dynamics may involve complex patterns of interactions that change over time. We are going to show that time-dependent consensus algorithms converge under relatively mild assumptions involving suitable notions of connectivity. Actually, the underlying graph needs not to be connected at any time, but the sequence of graphs must be “sufficiently connected” over time. More specifically, in Sects. 3.1 and 3.2 we provide two families of results, corresponding to two sufficient connectivity assumptions. Our presentation also includes, in Sect. 3.3, cases when the matrix evolves randomly in time. These randomized dynamics encompass the so-called gossip algorithms, which have attracted much attention in the last decade.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this result, inequalities between matrices like \(A\le B\) have to be intended as \(A-B\) being negative semidefinite.

References

  1. Aysal, T.C., Yildiz, M.E., Sarwate, A.D., Scaglione, A.: Broadcast gossip algorithms for consensus. IEEE Trans. Signal Process. 57(7), 2748–2761 (2009)

    Article  MathSciNet  Google Scholar 

  2. Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: On Krause’s multi-agent consensus model with state-dependent connectivity. IEEE Trans. Autom. Control 54(11), 2586–2597 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: Continuous-time average-preserving opinion dynamics with opinion-dependent communications. SIAM J. Control Optim. 48(8), 5214–5240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press (2009)

    Google Scholar 

  6. Canuto, C., Fagnani, F., Tilli, P.: An Eulerian approach to the analysis of Krause’s consensus models. SIAM J. Control Optim. 50(1), 243–265 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cao, M., Morse, A.S., Anderson, B.D.O.: Agreeing asynchronously. IEEE Trans. Autom. Control 53(8), 1826–1838 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cao, M., Morse, A.S., Anderson, B.D.O.: Reaching a consensus in a dynamically changing environment - convergence rates, measurement delays and asynchronous events. SIAM J. Control Optim. 47(2), 601–623 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ceragioli, F., Frasca, P.: Continuous and discontinuous opinion dynamics with bounded confidence. Nonlinear Anal. Real World Appl. 13(3), 1239–1251 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cogburn, R.: On products of random stochastic matrices. In: Random Matrices and their Applications, vol. 50. Contemporary Mathematics, pp. 199–213. American Mathematical Society (1986)

    Google Scholar 

  11. De Persis, C., Frasca, P., Hendrickx, J.M.: Self-triggered rendezvous of gossiping second-order agents. In: IEEE Conference on Decision and Control, Florence, Italy, pp. 7403–7408 (2013)

    Google Scholar 

  12. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3(1–4), 87–98 (2000)

    Article  Google Scholar 

  13. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  14. Dimakis, A.G., Kar, S., Moura, J.M.F., Rabbat, M.G., Scaglione, A.: Gossip algorithms for distributed signal processing. Proc. IEEE 98(11), 1847–1864 (2010)

    Article  Google Scholar 

  15. Etesami, S.R.: Potential-based analysis of social, communication, and distributed networks. Ph.D. thesis, University of Illinois at Urbana-Champaign (2015)

    Google Scholar 

  16. Etesami, S.R., Başar, T.: Game-theoretic analysis of the Hegselmann-Krause model for opinion dynamics in finite dimensions. IEEE Trans. Autom. Control 60(7), 1886–1897 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fagnani, F., Frasca, P.: Broadcast gossip averaging: interference and unbiasedness in large Abelian Cayley networks. IEEE J. Sel. Top. Signal Process. 5(4), 866–875 (2011)

    Article  Google Scholar 

  18. Fagnani, F., Zampieri, S.: Asymmetric randomized gossip algorithms for consensus. In: IFAC World Congress, Seoul, Korea, pp. 9052–9056, July 2008

    Google Scholar 

  19. Fagnani, F., Zampieri, S.: Randomized consensus algorithms over large scale networks. IEEE J. Sel. Areas Commun. 26(4), 634–649 (2008)

    Article  Google Scholar 

  20. Fagnani, F., Zampieri, S.: Average consensus with packet drop communication. SIAM J. Control Optim. 48(1), 102–133 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Frasca, P., Hendrickx, J.M.: Large network consensus is robust to packet losses and interferences. In: European Control Conference, Zürich, Switzerland, pp. 1782–1787, July 2013

    Google Scholar 

  22. Frasca, P., Hendrickx, J.M.: On the mean square error of randomized averaging algorithms. Automatica 49(8), 2496–2501 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif. Soc. Soc. Simul. 5(3), 1–33 (2002)

    Google Scholar 

  24. Hendrickx, J.M.: Graphs and Networks for the Analysis of Autonomous Agent Systems. Ph.D. thesis, Université catholique de Louvain (2008)

    Google Scholar 

  25. Hendrickx, J.M., Tsitsiklis, J.N.: Convergence of type-symmetric and cut-balanced consensus seeking systems (extended version). http://arxiv.org/abs/1102.2361 (2011)

  26. Hendrickx, J.M., Tsitsiklis, J.N.: A new condition for convergence in continuous-time consensus seeking systems. In: IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp. 5070–5075 (2011)

    Google Scholar 

  27. Hendrickx, J.M., Tsitsiklis, J.N.: Convergence of type-symmetric and cut-balanced consensus seeking systems. IEEE Trans. Autom. Control 58(1), 214–218 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. In: Elaydi, S., Ladas, G., Popenda, J., Rakowski, J. (eds.) Communications in Difference Equations. Gordon & Breach, pp. 227–236 (2000)

    Google Scholar 

  30. Liu, B., Lu, W., Chen, T.: Consensus in networks of multiagents with switching topologies modeled as adapted stochastic processes. SIAM J. Control Optim. 49(1), 227–253 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lorenz, J.: A stabilization theorem for continuous opinion dynamics. Phys. A 355(1), 217–223 (2005)

    Article  MathSciNet  Google Scholar 

  32. Lorenz, J.: Continuous opinion dynamics under bounded confidence: A survey. Int. J. Mod. Phys. C 18(12), 1819–1838 (2007)

    Article  MATH  Google Scholar 

  33. Martin, S., Hendrickx, J.M.: Continuous-time consensus under non-instantaneous reciprocity. IEEE Trans. Autom. Control 61(9), 2484–2495 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mirtabatabaei, A., Bullo, F.: Opinion dynamics in heterogeneous networks: convergence conjectures and theorems. SIAM J Control Optim. 50(5), 2763–2785 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Nedich, A., Liu, J.: Lyapunov approach to consensus problems (2014)

    Google Scholar 

  37. Olshevsky, A., Tsitsiklis, J.N.: Convergence speed in distributed consensus and averaging. SIAM J. Control Optim. 48(1), 33–55 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Roozbehani, M., Megretski, A., Frazzoli, E.: Lyapunov analysis of quadratically symmetric neighborhood consensus algorithms. In: IEEE Conference on Decision and Control, Cancún, México, pp. 2252–2257 (2008)

    Google Scholar 

  39. Seneta, E.: Non-negative Matrices and Markov Chains. Springer Series in Statistics. Springer (2006)

    Google Scholar 

  40. Tahbaz-Salehi, A., Jadbabaie, A.: A necessary and sufficient condition for consensus over random networks. IEEE Trans. Autom. Control 53(3), 791–795 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tahbaz-Salehi, A., Jadbabaie, A.: Consensus over ergodic stationary graph processes. IEEE Trans. Autom. Control 55(1), 225–230 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Touri, B.: Product of Random Stochastic Matrices and Distributed Averaging. Springer Theses. Springer, March 2012

    Google Scholar 

  43. Touri, B., Langbort, C.: On endogenous random consensus and averaging dynamics. IEEE Trans. Autom. Control 1(3), 241–248 (2014)

    MATH  MathSciNet  Google Scholar 

  44. Touri, B., Nedic, A.: Product of random stochastic matrices. IEEE Trans. Autom. Control 59(2), 437–448 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  45. Tsitsiklis, J.N.: Problems in Decentralized Decision Making and Computation. Ph.D. thesis, Massachusetts Institute of Technology, November 1984

    Google Scholar 

  46. Wang, C., Li, Q., Weinan, E., Chazelle, B.: Noisy Hegselmann-Krause systems: phase transition and the 2r-conjecture. J. Stat. Phys. 166(5), 1209–1225 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhang, J., Hong, Y.: Opinion evolution analysis for short-range and long-range Deffuant-Weisbuch models. Phys. A 392(21), 5289–5297 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Frasca .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagnani, F., Frasca, P. (2018). Averaging in Time-Varying Networks. In: Introduction to Averaging Dynamics over Networks. Lecture Notes in Control and Information Sciences, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-68022-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68022-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68021-7

  • Online ISBN: 978-3-319-68022-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics