Skip to main content

Averaging in Time-Invariant Networks

  • Chapter
  • First Online:
Introduction to Averaging Dynamics over Networks

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 472))

  • 675 Accesses

Abstract

This chapter studies the basic averaging dynamics on a fixed network. This linear dynamics is also called “consensus” dynamics, because under suitable assumptions it brings the states associated with the nodes to converge to the same value. Section 2.1 introduces the rendezvous problem, which serves us as the main motivation to seek consensus, and states the main results of the chapter. Section 2.2 solves the consensus problem in the special case of symmetric regular graphs, while the general solution, which is based on the notion of stochastic matrix, is presented in Sect. 2.3. The subsequent sections provide further insights into the averaging dynamics, namely about its speed of convergence (Sects. 2.4 and 2.7) and its consensus value (Sect. 2.5). Meanwhile, Sect. 2.6 presents some classical examples of stochastic matrices associated with a graph, such as simple random walks and Metropolis walks. Finally, Sect. 2.8 concentrates on reversible stochastic matrices and their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and throughout the book, we will make use of the standard asymptotic notation. If \(f_n\) and \(g_n\) are two positive sequences, we say that \(f_n=O(g_n)\) if \(f_n/g_n\) is upper bounded in n; that \(f_n=\varTheta (g_n)\) if \(f_n/g_n\) is both lower and upper bounded in n; that \(f_n=o(g_n)\) if \(f_n/g_n\rightarrow 0\) as \(n\rightarrow \infty \); and that \(f_n\sim g_n\) if \(f_n/g_n\rightarrow 1\) as \(n\rightarrow \infty \).

  2. 2.

    A matrix A is said to be normal when \(A^* A = AA^*\). Normal matrices are precisely those for which a complete basis of eigenvectors exists. Symmetric matrices are normal.

References

  1. Aldous, D., Fill, J.A.: Reversible Markov Chains and Random Walks on Graphs (2002). Unfinished monograph, recompiled 2014

    Google Scholar 

  2. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–86 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms 5, 271–284 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyd, S., Diaconis, P., Xiao, L.: Fastest mixing Markov chain on a graph. SIAM Rev. 46(4), 667–689 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bullo, F.: Lectures on Network Systems. Version 0.95 (2017). With contributions by Cortés, J., Dörfler, F., Martínez, S

    Google Scholar 

  6. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press (2009)

    Google Scholar 

  7. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: Optimal synchronization for networks of noisy double integrators. IEEE Trans. Autom. Control 56(5), 1146–1152 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63(5), 277 (1956)

    Article  Google Scholar 

  9. Ceragioli, F., De Persis, C., Frasca, P.: Discontinuities and hysteresis in quantized average consensus. Automatica 47(9), 1916–1928 (2011)

    Google Scholar 

  10. Chatterjee, S., Seneta, E.: Towards consensus: some convergence theorems on repeated averaging. J. Appl. Probab. 14(1), 89–97 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Como, G., Fagnani, F.: Robustness of large-scale stochastic matrices to localized perturbations. IEEE Trans. Network Sci. Eng. 2(2), 53–64 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7(2), 279–301 (1989)

    Article  Google Scholar 

  13. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  14. Delvenne, J.-C., Carli, R., Zampieri, S.: Optimal strategies in the average consensus problem. Syst. Control Lett. 58(10–11), 759–765 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fagnani, F., Delvenne, J.-C.: The robustness of democratic consensus. Automatica 52, 232–241 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Francis, B.A., Maggiore, M.: Flocking and Rendezvous in Distributed Robotics. Springer (2015)

    Google Scholar 

  18. French, J.R.P.: A formal theory of social power. Psychol. Rev. 63, 181–94 (1956)

    Article  Google Scholar 

  19. Gantmacher, F.R.: The theory of matrices. Chelsea, New York (1959)

    MATH  Google Scholar 

  20. Gharesifard, B., Cortés, J.: Distributed strategies for generating weight-balanced and doubly stochastic digraphs. Eur. J. Control 18(6), 539–557 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Golub, B., Jackson, M.O.: Naïve learning in social networks and the hegsel of crowds. Am. Econ. J. Microecon. 2(1), 112–149 (2010)

    Article  Google Scholar 

  22. Hendrickx, J.M.: Graphs and Networks for the Analysis of Autonomous Agent Systems. Ph.D. thesis, Université catholique de Louvain (2008)

    Google Scholar 

  23. Hendrickx, J.M., Jungers, R.M., Olshevsky, A., Vankeerberghen, G.: Graph diameter, eigenvalues, and minimum-time consensus. Automatica 50(2), 635–640 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Distributed anonymous discrete function computation. IEEE Trans. Autom. Control 56(10), 2276–2289 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hendrickx, J.M., Shi, G., Johansson, K.H.: Finite-time consensus using stochastic matrices with positive diagonals. IEEE Trans. Autom. Control 60(4), 1070–1073 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hendrickx, J.M., Tsitsiklis, J.N.: Convergence of type-symmetric and cut-balanced consensus seeking systems. IEEE Trans. Autom. Control 58(1), 214–218 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jackson, M.O.: Social and Economic Networks. Princeton University Press (2010)

    Google Scholar 

  28. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Landau, H.J., Odlyzko, A.M.: Bounds for eigenvalues of certain stochastic matrices. Linear Algebra Appl. 38, 5–15 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society (2009)

    Google Scholar 

  31. Lewis, F.L., Zhang, H., Hengster-Movric, K., Das, A.: Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches. Springer Science & Business Media (2013)

    Google Scholar 

  32. Li, Q., Rus, D.: Global clock syncronization in sensor networks. IEEE Trans. Comput. 55(2), 214–226 (2006)

    Article  Google Scholar 

  33. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods for Multiagent Networks. Applied Mathematics Series. Princeton University Press, 0 (2010)

    Book  MATH  Google Scholar 

  34. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press (2009)

    Google Scholar 

  35. Moallemi, C.C., Van Roy, B.: Consensus propagation. IEEE Trans. Inf. Theory 52(11), 4753–4766 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Moreau, L.: Stability of continuous-time distributed consensus algorithms. In: IEEE Conference on Decision and Control, Bahamas, pp. 3999–4003, December 2004

    Google Scholar 

  37. Nedich, A.: Convergence rate of distributed averaging dynamics and optimization in networks. Found. Trends® Syst. Control, 2(1), 1–100 (2015)

    Google Scholar 

  38. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Olshevsky, A.: Linear time average consensus on fixed graphs and implications for decentralized optimization and multi-agent control, May 2016

    Google Scholar 

  40. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. Assoc. Comput. Mach. 27(2), 228–234 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control Theory and Applications. Springer, New York (2007)

    MATH  Google Scholar 

  42. Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer Science & Business Media (2011)

    Google Scholar 

  43. Sarnak, P.: What is...an expander? Not. Am. Math. Soc. 51(7), 762–763 (2004)

    MATH  MathSciNet  Google Scholar 

  44. Sayed, A.H.: Adaptation, learning, and optimization over networks. Found. Trends\({\textregistered }\) Mach. Learn. 7(4–5), 311–801 (2014)

    Google Scholar 

  45. Seneta, E.: Non-negative Matrices and Markov Chains. Springer Series in Statistics. Springer, Berlin (2006)

    MATH  Google Scholar 

  46. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1–4), 1–20 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sundaram, S., Hadjicostis, C.N.: Finite-time distributed consensus in graphs with time-invariant topologies. In: American Control Conference, pp. 711–716, July 2007

    Google Scholar 

  48. Tran, T.D., Kibangou, A.Y.: Distributed design of finite-time average consensus protocols. In: IFAC Workshop on Estimation and Control of Networked Systems, Koblenz, Germany, pp. 227–233, September 2013

    Google Scholar 

  49. Tsitsiklis, J.N.: Problems in Decentralized Decision Making and Computation. Ph.D. thesis, Massachusetts Institute of Technology, November 1984

    Google Scholar 

  50. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  51. Vassio, L., Fagnani, F., Frasca, P., Ozdaglar, A.: Message passing optimization of harmonic influence centrality. IEEE Trans. Control Network Syst. 1(1), 109–120 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  52. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  53. Wieland, P., Sepulchre, R., Allgöwer, F.: An internal model principle is necessary and sufficient for linear output synchronization. Automatica 47(5), 1068–1074 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim. Theory Appl. 129(3), 469–488 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  55. Zhang, F.J., Lin, G.N.: On the de Bruijn-Good graphs. Acta Math. Sinica 30(2), 195–205 (1987)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Frasca .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagnani, F., Frasca, P. (2018). Averaging in Time-Invariant Networks. In: Introduction to Averaging Dynamics over Networks. Lecture Notes in Control and Information Sciences, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-68022-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68022-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68021-7

  • Online ISBN: 978-3-319-68022-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics