Skip to main content

The Missing Mass Extinction at the Triassic-Jurassic Boundary

  • Chapter
  • First Online:
The Late Triassic World

Part of the book series: Topics in Geobiology ((TGBI,volume 46))

Abstract

The Late Triassic was a prolonged episode characterized by high rates of biotic turnover and discrete extinction events due to elevated extinction rates for some biotic groups and low origination rates for many. An end-Triassic mass extinction continues to be cited as one of the “big five” mass extinctions of the Phanerozoic. However, a detailed examination of the fossil record, especially by best-sections analysis, indicates that many of the groups usually claimed to have suffered catastrophic extinction at the end of the Triassic, such as ammonoids, marine bivalves, conodonts and tetrapod vertebrates, experienced multiple extinctions throughout the Late Triassic, not a single mass extinction at the end of the Period. Many other groups were relatively unaffected, whereas some other groups, such as reef communities, were subject to only regional effects. Indeed, the lack of evidence of a collapse of trophic networks in the sea and on land makes the case for an end-Triassic mass extinction untenable. Still, marked evolutionary turnover of radiolarians and ammonoids did occur across the Triassic-Jurassic boundary. The end of the Triassic encompassed temporary disruptions of the marine and terrestrial ecosystems, driven by the environmental effects of the eruption of the flood basalts of the Circum-Atlantic Magmatic Province (CAMP), through outgassing in particular, but these disruptions did not produce a global mass extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala F, Gaetano LC (2017) Late Triassic cynodont life: time of innovations in the mammal lineage. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Abdala F, Ribeiro AM (2010) Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana. Palaeogeog Paleoclimat Palaeoecol 286:202–217

    Article  Google Scholar 

  • Aldridge RJ, Smith MP (1993) Conodonta. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 563–572

    Google Scholar 

  • Allasinaz A (1992) The Late Triassic-Hettangian bivalve turnover in Lombardy (Southern Alps). Riv Ital Paleont Strat 97:431–454

    Google Scholar 

  • Alroy J (2010) Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeont 53:1211–1235

    Article  Google Scholar 

  • Archibald JD, MacLeod N (2013) The end-Cretaceous extinction. In: MacLeod N (ed) Extinction: Grzimek’s animal life encyclopedia. Gale Cengage Learning, Detroit, pp 497–512

    Google Scholar 

  • Ash S (1986) Fossil plants and the Triassic-Jurassic boundary. In: Padian K (ed) The beginning of the age of dinosaurs. Cambridge University Press, Cambridge, pp 21–30

    Google Scholar 

  • Avanzini M, Pinuela L, Garcia-Ramos JC (2010) First report of a Late Jurassic lizard-like footprint (Asturias, Spain). J Iberian Geol 36:175–180

    Article  Google Scholar 

  • Bachan A, Payne JL (2016) Modelling the impact of pulsed CAMP volcanism on pCO2 and δ13C across the Triassic–Jurassic transition. Geol Mag 153:252–270

    Article  Google Scholar 

  • Bacon KL, Belcher CM, Hesselbo SP, McElwain JC (2011) The Triassic–Jurassic boundary carbon-isotope excursions expressed in taxonomically identified leaf cuticles. PALAIOS 26:461–469

    Article  Google Scholar 

  • Bacon KL, Belcher CM, Haworth M, McElwain JC (2013) Increased atmospheric SO2 detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland. PLoS One 8(4):e60614

    Article  Google Scholar 

  • von Baczko MB, Ezcurra MD (2013) Ornithosuchidae: a group of Triassic archosaurs with a unique ankle joint. In: Nesbitt SJ, Desojo JB, Irmis RB (eds) Anatomy, phylogeny and palaeobiology of early archosaurs and their kin. Geol Soc Lond Spec Publ 379:187–202

    Google Scholar 

  • Baird D (1986) Some upper Triassic reptiles, footprints, and an amphibian from New Jersey. Mosasaur 3:125–153

    Google Scholar 

  • Bakker RT (1977) Tetrapod mass extinctions—a model of the regulation of speciation rates and immigration by cycles of topographic diversity. In: Hallam A (ed) Patterns of evolution as illustrated in the fossil record. Developments in Paleontology and Stratigraphy 5. Elsevier, Amsterdam, pp 439–468

    Chapter  Google Scholar 

  • Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiol 30:522–542

    Article  Google Scholar 

  • Barbacka M, Pacyna G, Kocsis AT, Jarzynka A, Ziaja J, Bodor E (2017) Changes in terrestrial floras at the Triassic-Jurassic boundary in Europe. Palaeogeog Palaeoclimat Palaeoecol 480:80–93

    Article  Google Scholar 

  • Bardet N (1995) Evolution et extinction des reptiles marins au cours du Mesozoique. Palaeovertebr 24:177–283

    Google Scholar 

  • Barras CG, Twitchett RJ (2007) Response of the marine infauna to Triassic-Jurassic environmental change: ichnological data from southern England. Palaeogeog Palaeoclimat Palaeoecol 244:223–241

    Article  Google Scholar 

  • Barras CG, Twitchett RJ (2016) The Late Triassic mass extinction event. In: Mángano MG, Buatois LA (eds) The trace-fossil record of major evolutionary events. Topics in Geobiology 40:1–18

    Google Scholar 

  • Beauvais L (1984) Evolution and diversification of Jurassic Scleractinia. Palaeont Americ 54:219–224

    Google Scholar 

  • Beerling DJ, Berner RA (2002) Biogeochemical constraints on the Triassic–Jurassic boundary carbon cycle event. Global Biogeochem Cycles 16:101–113

    Article  Google Scholar 

  • Belcher CM, Mander L, Rein G, Jervis FX, Haworth M, Hesselbo SP, Glasspool IJ, McElwain JC (2010) Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geosc 3:426–429

    Article  Google Scholar 

  • Benton MJ (1985) Mass extinction among non-marine tetrapods. Nature 316:1–4

    Article  Google Scholar 

  • Benton MJ (1986) More than one event in the Late Triassic mass extinction. Nature 321:857–861

    Article  Google Scholar 

  • Benton MJ (1987) Mass extinctions among families of non-marine tetrapods: the data. Mem Soc Geol France NS 150:21–32

    Google Scholar 

  • Benton, MJ (1988) Mass extinctions in the fossil record of reptiles: paraphyly, patchiness, and periodicity(?). In: Larwood GP (ed) Extinction and survival in the fossil record. Systemat Assoc Spec 4:269–294

    Google Scholar 

  • Benton MJ (1989) Mass extinctions among tetrapods and the quality of the fossil record. Phil Trans Royal Soc London B 325:369–386

    Article  Google Scholar 

  • Benton MJ (1991) What really happened in the Late Triassic? Hist Biol 5:263–278

    Article  Google Scholar 

  • Benton MJ (1994) Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern. In: Fraser NC, Sues HD (eds) In the shadow of the Dinosaurs. Cambridge University Press, Cambridge, pp 366–397

    Google Scholar 

  • Bernardi M, Petti FM, Porchetti SD, Avanzini M (2013) Large tridactyl footprints associated with a diverse ichnofauna from the Carnian of the Southern Alps. New Mex Mus Nat Hist Sci Bull 61:48–54

    Google Scholar 

  • Berner RA, Beerling DJ (2007) Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic–Jurassic boundary. Palaeogeog Palaeoclimat Palaeoecol 244:368–373

    Article  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Article  Google Scholar 

  • Bertinelli A, Casacci M, Concheri G, Gattolin G, Godfrey L, Katz ME, Maron M, Mazza M, Mietto P, Muttoni G, Rigo M, Sprovieri M, Stellin F, Zaffani M (2016) The Norian/Rhaetian boundary interval at Pignola-Abriola section (Southern Apennines, Italy) as a GSSP candidate for the Rhaetian Stage: an update. Albertiana 43:5–18

    Google Scholar 

  • Bice D, Newton CR, McCauley SE, Reiners PW, McRoberts CA (1992) Shocked quartz at the Triassic/Jurassic boundary in Italy. Science 255:443–446

    Article  Google Scholar 

  • Blome CD (1986) Paleogeographic significance of Upper Triassic and Lower Jurassic Radiolaria from Cordilleran terranes. Proce N Amer Paleontl Conv 4:A5

    Google Scholar 

  • Blome CD, Hull DM, Pessagno EA Jr, Reed KM (1995) Meozoic Radiolaria. In: Blome CD, Whalen PM, Reed KM (eds) Siliceous microfossils. Paleont Soc, Short Courses Paleont 8:31–60

    Google Scholar 

  • Bonis NR, Kurschner WM (2012) Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiol 38:240–264

    Article  Google Scholar 

  • Bonis NR, Kürschner W, Krystyn L (2009) A detailed palynological study of the Triassic-Jurassic transition in key sections of the Eiberg basin (Northern calcareous Alps, Austria). Rev Palaeobot Palyn 156:376–400

    Article  Google Scholar 

  • Bonis NR, van Konijnenburg-van Cliffert JHA, Kürschner WM (2010) Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeogr Palaeoclimatol Palaeoecol 295:146–161

    Google Scholar 

  • Bragin NY (2000) Triassic radiolarian zonation in the Far East of Russia. StratGeol Correl 8:579–592

    Google Scholar 

  • Brugman WA (1983) Permian-Triassic palynology. State University Utrecht, Utrecht

    Google Scholar 

  • Buatois LA, Carmona NB, Curran HA, Netto RG, Mángano MG, Wetzel A (2016) The Mesozoic marine revolution. In: Mángano MG, Buatois LA (eds) The trace-fossil record of major evolutionary events. Topics Geobiol 40:19–134

    Google Scholar 

  • Burgoyne PM, van Wyk AE, Anderson JM, Schrire BD (2005) Phanerozoic evolution of plants on the African plate. J Afr Earth Sci 43:13–52

    Article  Google Scholar 

  • Carter ES (1993) Biochronology and paleontology of uppermost Triassic (Rhaetian) radiolarians, Queen Charlotte Islands, British Columbia, Canada. Mém Géol Lausanne 11:1–175

    Google Scholar 

  • Carter ES (1994) Evolutionary trends in latest Norian through Hettangian radiolarians from the Queen Charlotte Islands, British Columbia. Geob Mém Spéc 17:111–119

    Article  Google Scholar 

  • Carter ES (2007) Global distribution of Rhaetian radiolarian faunas and their contribution to the definition of the Triassic-Jurassic boundary. New Mex Mus Nat Hist Sci Bull 41:27–31

    Google Scholar 

  • Carter ES, Guex J (1999) Phyletic trends in uppermost Triassic (Rhaetian) Radiolaria: two examples from Queen Charlotte Islands, British Columbia, Canada. Micropaleont 45:183–200

    Article  Google Scholar 

  • Carter E, Hori R (2005) Global correlation of the radiolarian faunal change across the Triassic-Jurassic boundary. Canad J Earth Sci 42:777–790

    Article  Google Scholar 

  • Cascales-Miñana B, Cleal CJ (2011) Plant fossil record and survival analysis. Lethaia 45:71–82

    Article  Google Scholar 

  • Cerling TE (1992) Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere. Glob Biogeochem Cycl 6:307–314

    Article  Google Scholar 

  • Ciarapica G (2007) Regional and global changes around the Triassic–Jurassic boundary reflected in the late Norian–Hettangian history of the Apennine basins. Palaeogeog Palaeoclimatol Palaeoecol 244:34–51

    Article  Google Scholar 

  • Cirilli S (2010) Uppermost Triassic-lowermost Jurassic palynology and palynostratigraphy: a review. In: Lucas SG (ed) The Triassic timescale. Geol Soc Lond Spec Pub 334:285–314

    Google Scholar 

  • Cirilli S, Galli MT, Jadoul F (2003) Carbonate platform evolution and sequence stratigraphy at Triassic/Jurassic boundary in the Western Southern Alps of Lombardy (Italy): an integrated approach of litho-palynofacies analysis. Geol Assoc Canada, Vancouver 2003 Meet, Abstr vol 28, CD-ROM

    Google Scholar 

  • Cirilli S, Marzoli A, Tanner LH, Bertrand H, Buratti N, Jourdan F, Bellieni G, Kontak D, Renne RP (2009) The onset of CAMP eruptive activity and the Tr-J boundary: stratigraphic constraints from the Fundy Basin, Nova Scotia. Earth Planet Sci Letters 286:514–525

    Article  Google Scholar 

  • Clark DL (1980) Rise and fall of Triassic conodonts. Amer Assoc Petrol Geol Bull 64:691

    Google Scholar 

  • Clark DL (1981) Extinction of Triassic conodonts. Geol Bundesanst Abhand 35:193–195

    Google Scholar 

  • Clark DL (1983) Extinction of conodonts. J Paleontol 57:652–661

    Google Scholar 

  • Cleal CJ (1993a) Pteridophyta. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 779–794

    Google Scholar 

  • Cleal CJ (1993b) Gymnospermophyta. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 795–808

    Google Scholar 

  • Colbert EH (1949) Progressive adaptations as seen in the fossil record. In: Jepsen GL, Mayr E, Simpson GG (eds) Genetics, paleontology and evolution. Princeton University Press, Princeton, pp 390–402

    Google Scholar 

  • Colbert EH (1958) Triassic tetrapod extinction at the end of the Triassic Period. Proc Nat Acad Sci USA 44:973–977

    Article  Google Scholar 

  • Cornet B (1977) The palynostratigraphy and age of the Newark Supergroup. PhD Thesis. Pennsylvania State University, University Park, pp 1–505

    Google Scholar 

  • Cornet B, Olsen PE (1985) A summary of the biostratigraphy of the Newark Supergroup of eastern North America with comments on provinciality. In: Weber R (ed) III Congreso Latinoamericano de Paleontolia Mexico, Simposio Sobre Floras del Triasico Tardio, su Fitogeografia y Palecologia, Memoria. UNAM Instituto de Geologia, Mexico City, pp 67–81

    Google Scholar 

  • Crowley TJ, Hyde WT, Short DA (1989) Seasonal cycle variations on the supercontinent of Pangaea. Geol 17:457–460

    Article  Google Scholar 

  • Dagys AS, Dagys AA (1994) Global correlation of the terminal Triassic. Mém Géol Lausanne 22:25–34

    Google Scholar 

  • Dam G, Surlyk F (1993) Cyclic sedimentation in a large wave- and storm-dominated anoxic lake, Kap Stewart Formation (Rhaetian-Sinemurian), Jameson Land, East Greenland. Internat Assoc Sediment Spec Publ 18:419–448

    Google Scholar 

  • De Renzi M, Budurov K, Sudar M (1996) The extinction of conodonts—in terms of discrete elements—at the Triassic-Jurassic boundary. Cuad Geol Ibér 20:347–364

    Google Scholar 

  • Deckart K, Fèraud G, Bertrand H (1997) Age of Jurassic continental tholeiites of French Guyana, Surinam and Guinea: implications for the initial opening of the Central Atlantic Ocean. Earth Planet Sci Letters 150:205–220

    Article  Google Scholar 

  • Delecat S, Reitnwer J (2005) Sponge communities from the lower Liassic of Adnet (Northern Calcareous Alps, Austria). Facies 51:385–404

    Article  Google Scholar 

  • Deng S, Lu Y, Xu D (2005) Progress and review of the studies of the end-Triassic mass extinction event. Sci China Ser D Earth Sci 48:2049–2060

    Article  Google Scholar 

  • Desojo JB, Heckert AB, Martz JW, Parker WG, Schoch RR, Small BJ, Sulej T (2013) Aetosauria: a clade of armoured pseudosuchians from the Upper Triassic continental beds. In: Nesbitt SJ, Desojo JB, Irmis RB (eds) Anatomy, phylogeny and palaeobiology of early archosaurs and their kin. Geol Soc Lond Spec Publ 379:203–240

    Google Scholar 

  • Dommergues J-L, Laurin B, Meister C (2001) The recovery and radiation of Early Jurassic ammonoids: morphologic versus palaeobiogeographical patterns. Palaeogeog Palaeoclimat Palaeoecol 165:195–213

    Article  Google Scholar 

  • Dommergues J-L, Montuire S, Neige P (2002) Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423–434

    Google Scholar 

  • Dubiel RF, Parrish JT, Parrish JM, Good SC (1991) The Pangaean megamonsoon—evidence from the Upper Triassic Chinle Formation, Colorado Plateau. PALAIOS 6:347–370

    Article  Google Scholar 

  • Dzik J, Sulej T, Niedzwiedzki G (2008) A dicynodont-theropod association in the latest Triassic of Poland. Acta Palaeont Pol 53:733–738

    Article  Google Scholar 

  • Edwards D (1993) Bryophyta. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 775–778

    Google Scholar 

  • Fawcett PJ, Barron EJ, Robinson VD, Katz BJ (1994) The climatic evolution of India and Australia from the Late Permian to Mid-Jurassic: a comparison of climate model results with the geologic record. In: Klein GD (ed) Pangea: paleoclimate, tectonics and sedimentation during accretion, zenith and break-up of a supercontinent. Geol Soc Am Spec Pap 288:139–157

    Google Scholar 

  • Fisher MJ, Dunay RE (1981) Palynology and the Triassic/Jurassic boundary. Rev Palaeobot Palyn 34:129–135

    Article  Google Scholar 

  • Flügel E (1975) Fossile Hydrozoan—Kenntnisse und Probleme. Paläontol Z 49:369–406

    Article  Google Scholar 

  • Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flugel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:391–463

    Google Scholar 

  • Flügel E, Flügel-Kahler E (1992) Phanerozoic reef evolution: basic questions and data base. Facies 26:167–278

    Article  Google Scholar 

  • Flugel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flugel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:691–734

    Google Scholar 

  • Flugel E, Senowbari-Daryan B (2001) Triassic reefs of the Tethys. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Publishers, New York, pp 217–249

    Chapter  Google Scholar 

  • Flügel E, Stanley GD Jr (1984) Reorganization, development and evolution of post-Permian reefs and reef organisms. Palaeont Amer 54:177–186

    Google Scholar 

  • Fowell SJ, Olsen PE (1993) Time calibration of Triassic-Jurassic microfloral turnover, eastern North America. Tectonoph 222:361–369

    Article  Google Scholar 

  • Fowell SJ, Traverse A (1995) Palynology and age of the upper Blomidon Formation, Fundy basin, Nova Scotia. Rev Palaeobot Palyn 86:211–233

    Article  Google Scholar 

  • Fowell SJ, Cornet B, Olsen PE (1994) Geologically rapid Late Triassic extinctions: palynological evidence from the Newark Supergroup. Geol Soc Amer Spec Pap 288:197–206

    Article  Google Scholar 

  • Fraser NC (1994) Assemblages of small tetrapods from British Late Triassic fissure deposits. In: Fraser N, Sues HD (eds) In the shadow of the dinosaurs. Cambridge University Press, Cambridge, pp 214–226

    Google Scholar 

  • Fraser NM, Bottjer DJ, Fischer AG (2004) Dissecting “Lithiotis” bivalves: implications for the Early Jurassic reef collapse. PALAIOS 19:51–67

    Article  Google Scholar 

  • Fürsich FT, Jablonski D (1984) Late Triassic naticid drillholes: carnivorous gastropods gain a major adaptation but fail to radiate. Science 224:78–80

    Article  Google Scholar 

  • Galli MT, Jadoul F, Bernasconi SM, Weissert H (2005) Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeog Palaeoclimat Palaeoecol 16:203–214

    Article  Google Scholar 

  • Galli MT, Jadoul F, Bernasconi SM, Cirilli S, Weissert H (2007) Stratigraphy and palaeoenvironmental analysis of the Triassic–Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeog Palaeoclimat Palaeoecol 244:52–70

    Article  Google Scholar 

  • Gardin S, Krystyn L, Richoz S, Bartolini A, Galbrun B (2012) When and where the earliest coccolithophores? Lethaia 45:507–523

    Article  Google Scholar 

  • Gottfried, D, Froelich AJ, Grossman, JN (1991) Geochemical data for Jurassic diabase associated with early Mesozoic basins in the eastern United States: geologic setting, overview, and chemical methods used. U.S. Geol Surv Open-File Rep OFR91-322A

    Google Scholar 

  • Greene SE, Martindale RC, Ritterbush KA, Bottjer DA, Corsetti FA, Berelson WM (2012) Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth Sci Rev 113:72–93

    Article  Google Scholar 

  • Gretz M, Lathulière B, Martini R, Bartolini A (2013) The Hettangian corals of the Isle of Skye (Scotland): an opportunity to better understand the palaeoenvironmental conditions during the aftermath of the Triassic-Jurassic boundary crisis. Palaeogeog Palaeoclimat Palaeoecol 376:132–148

    Article  Google Scholar 

  • Gretz M, Lathulière B, Martini R (2015) A new coral with simplified morphology from the oldest known Hettangian (Early Jurassic) reef in southern France. Acta Palaeont Polon 60:277–286

    Google Scholar 

  • Grossman, JN, Gottfried, D, Froelich, AJ (1991) Geochemical data for Jurassic diabase associated with early Mesozoic basins in the eastern United States. US Geol Surv Open-File Rep OFR91-322K

    Google Scholar 

  • Guex J (1982) Relations entre le genre Psiloceras et les Phylloceratida au voisinage de la limite Trias-Jurassique. Bull Géol Lausanne 260:47–51

    Google Scholar 

  • Guex J (1987) Sur la phylogenèse des ammonites du Lias inférieur. Bull Géol Lausanne 305:455–469

    Google Scholar 

  • Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclog Geol Helvet 94:321–328

    Google Scholar 

  • Guex J (2006) Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth Planet Sc Lett 242:240–253

    Article  Google Scholar 

  • Guex J (2016) Retrograde evolution during major extinction crises. Springer, Heidelberg

    Book  Google Scholar 

  • Guex J, Bartolini A, Taylor D (2002) Discovery of Neophyllites (Ammonita, Cephalopoda, early Hettangian) in the New York Canyon sections (Gabbs Valley Range, Nevada) and discussion of the δ13C negative anomalies located around the Triassic-Jurassic boundary. Bull Soc Vaud Sci Natur 88:247–255

    Google Scholar 

  • Guex J, Bartolini A, Atudorei V, Taylor D (2003) Two negative δ13Corg excursions near the Triassic-Jurassic boundary in the New York Canyon area (Gabbs Valley Range, Nevada). Bull Géol Lausanne 360:1–4

    Google Scholar 

  • Guex J, Bartolini A, Atudorei V, Taylor D (2004) High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). Earth Planet Sci Lett 225:29–41

    Article  Google Scholar 

  • Hallam A (1981) The end-Triassic bivalve extinction event. Palaeogeogr Palaeoclimat Palaeoecol 35:1–44

    Article  Google Scholar 

  • Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Phil Trans Royal Soc Lon B 325:437–455

    Article  Google Scholar 

  • Hallam A (1990) The end-Triassic mass extinction event. Geol Soc Amer Spec Pap 247:577–583

    Article  Google Scholar 

  • Hallam A (1992) Phanerozoic sea-level changes. Columbia University Press, New York, NY

    Google Scholar 

  • Hallam A (1995) Major bio-events in the Triassic and Jurassic. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 265–283

    Google Scholar 

  • Hallam A (1998) Mass extinctions in Phanerozoic time. In: Grady MM, Hutchison R, McCall GJH, Rothery DA (eds) Meteorites: flux with time and impact effects. Geol Soc London Spec Publ 140:259–274

    Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeog Palaeoclimatol Palaeoecol 167:23–37

    Article  Google Scholar 

  • Hallam A (2002) How catastrophic was the end-Triassic mass extinction? Lethaia 35:147–157

    Article  Google Scholar 

  • Hallam A, Goodfellow WD (1990) Facies and geochemical evidence bearing on the end-Triassic disappearance of the Alpine reef ecosystem. Hist Biol 4:131–138

    Article  Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford

    Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–258

    Article  Google Scholar 

  • Hallam A, Wignall PB (2000) Facies changes across the Triassic-Jurassic boundary in Nevada, USA. J Geol Soc 157:49–54

    Article  Google Scholar 

  • Hallam A, Wignall PB, Yin J, Riding JB (2000) An investigation into possible facies changes across the Triassic-Jurassic boundary in southern Tibet. Sed Geol 137:101–106

    Article  Google Scholar 

  • Harper EM, Skelton PW (1993) The Mesozoic marine revolution and epifaunal bivalves. Scripta Geol Spec Iss 2:127–153

    Google Scholar 

  • Harper EM, Forsythe GTW, Palmer T (1998) Taphonomy and the Mesozoic marine revolution: preservation state masks the importance of boring predators. PALAIOS 13:352–360

    Article  Google Scholar 

  • Harris TM (1937) The fossil flora of Scoresby Sound East Greenland, Part 5: Stratigraphic relations of the plant beds. Medd Grønland 112:1–112

    Google Scholar 

  • Hart MB, Williams CL (1993) Protozoa. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 43–70

    Google Scholar 

  • Hartley ME, Maclennan J, Edmonds M, Thordarson T (2014) Reconstructing the deep CO2 degassing behavior of large basaltic fissure eruptions. Earth Plan Sci Lett 393:120–131

    Article  Google Scholar 

  • Hautmann M (2004a) Early Mesozoic evolution of alivincular bivalve ligaments and its implications for the timing of the ‘Mesozoic marine revolution’. Lethaia 37:165–172

    Article  Google Scholar 

  • Hautmann M (2004b) Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50:257–261

    Article  Google Scholar 

  • Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology 30:251–254

    Article  Google Scholar 

  • Hesselbo SP, Robinson SA, Surlyk F (2004) Sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain. J Geol Soc Lond 161:365–379

    Article  Google Scholar 

  • Hillebrandt AV, Krystyn L, Kürschner WM, Bonis NR, Ruhl M, Richoz S, Schobben MAN, Ulrichs M, Bown PR, Kment K, McRoberts CA, Simms M, Tomãsovyc A (2013) The global stratotype section and point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Norhern Calcareous Alps, Tyrol, Austria). Episodes 36:162–198

    Google Scholar 

  • Hodges MS, Stanley GD Jr (2015) North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA. GSA Today 25:4–9

    Article  Google Scholar 

  • Hodych JP, Dunning GR (1992) Did the Manicouaga impact trigger end-of-Triassic mass extinction? Geol 20:51–54

    Article  Google Scholar 

  • Hönig MR, John CM, Manning C (2017) Development of an equatorial carbonate platform across the Triassic-Jurassic boundary and links to global palaeoenvironmental changes (Musandam Peninsula, UAE/Oman). Gondwan Res 45:100–117

    Article  Google Scholar 

  • Hori R (1992) Radiolarian biostratigraphy at the Triassic/Jurassic period boundary in bedded cherts from the Inuyama area, central Japan. J Geosci Osaka City Univ 35:53–65

    Google Scholar 

  • Hornung T, Brandner R, Krystyn L, Jaochimski MM, Keim L (2007) Multistratigraphic constraints on the NW Tethyan “Carnian crisis”. New Mex Mus Nat Hist Sci Bull 41:59–67

    Google Scholar 

  • Hounslow MW, Posen PE, Warrington G (2004) Magnetostratigraphy and biostratigraphy of the Upper Triassic and lowermost Jurassic succession, St. Audrie’s Bay, UK. Palaeogeog Palaeoclimat Palaeoecol 213:331–358

    Article  Google Scholar 

  • House MR (1963) Burst in evolution. Adv Sci 19:499–507

    Google Scholar 

  • House MR (1989) Ammonoid extinction events. Phil Trans R Soc London B325:307–326

    Article  Google Scholar 

  • Huber P (1997) Broad terrane Jurassic flood basalts across northeastern North America: comment. Geol 25:191

    Article  Google Scholar 

  • Huber P, Lucas SG, Hunt AP (1993) Vertebrate biochronology of the Newark Supergroup Triassic, eastern North America. New Mex Mus Nat Hist Sci Bull 3:179–186

    Google Scholar 

  • Hunt AP (1991) The early diversification of dinosaurs in the Late Triassic. Mod Geol 16:43–60

    Google Scholar 

  • Hunt AP (1993) A revision of the Metoposauridae (Amphibia: Temnospondyli) of the Late Triassic with description of a new genus from the western United States. Mus N Ariz Bull 59:67–97

    Google Scholar 

  • Ibarra Y, Corsetti FA, Greene SE, Bottjer DJ (2016) A microbial carbonate response in synchrony with the end-Triassic mass extinction across the SW UK. Nat Sci Rep. https://doi.org/10.1038/srep19808

  • Ikeda M, Hori RS, Okada Y, Nakada R (2015) Volcanism and deep-ocean acidification across the end-Triassic extinction event. Palaeogeog Palaeoclimatol Palaeoecol 440:725–733

    Article  Google Scholar 

  • Johnson JG (1971) Timing and coordination of orogenic, epeirogenic and eustatic events. Geol Soc Amer Bull 82:3263–3298

    Article  Google Scholar 

  • Johnson LA, Simms MJ (1989) The timing and cause of Late Triassic marine invertebrate extinctions: evidence from scallops and crinoids. In: Donovan SK (ed) Mass extinctions: processes and evidence. Columbia University Press, New York, pp 174–194

    Google Scholar 

  • Jourdan F (2013) Volcanoes, asteroid impacts and mass extinctions: a matter of timing. Mineral Mag 77:1408

    Google Scholar 

  • Kelber K-P (1998) Phytostratigraphische Aspekte der Makrofloren des süddeutschen Keupers. Doc Natur 117:89–115

    Google Scholar 

  • Kelber K-P (2003) Sterben und Neubeginn im Spiegel der Paläofloren. In: Hansch W (ed), Katastrophen in der Erdgeschichte. Heilbronn, Wendezeiten des Lebens Museo 19:38–59, 212–215

    Google Scholar 

  • Kelley NP, Motani R, Jiang D, Rieppel O, Schmitz L (2014) Selective extinction of Triassic marine reptiles during long-term sea-level changes illuminated by seawater strontium isotopes. Palaeogeog Palaeoclimat Palaeoecol 400:9–16

    Article  Google Scholar 

  • Kennedy WJ (1977) Ammonite evolution. In: Hallam A (ed) Patterns of evolution as illustrated in the fossil record. Elsevier, Amsterdam, pp 251–304

    Chapter  Google Scholar 

  • Kidder DL, Erwin DH (2001) Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. J Geol 109:509–522

    Article  Google Scholar 

  • Kiessling W (2001) Paleoclimatic significance of Phanerozoic reefs. Geol 29:751–754

    Article  Google Scholar 

  • Kiessling W, Simpson C (2011) On the potential for oceanic acidification to be a general cause of ancient reef crises. Glob Change Biol 17:56–67

    Article  Google Scholar 

  • Kiessling W, Flügel E, Golonka J (1999) Paleoreef maps: evaluation of a comprehensive database on Phanerozoic reefs. Amer Assoc Petrol Geol Bull 83:1552–1587

    Google Scholar 

  • Kiessling W, Aberhan M, Brenneis B, Wagner PJ (2007) Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeog Palaeoclimat Palaeoecol 244:201–222

    Article  Google Scholar 

  • Kiessling W, Roniewicz E, Villier L, Leonide P, Struck U (2009) An early Hettangian coral reef in southern France: implications for the end-Triassic reef crisis. PALAIOS 24:657–671

    Article  Google Scholar 

  • Klein H, Lucas SG (2010) The Triassic footprint record of crocodylomorphs: a critical re-evaluation. New Mex MusNat Hist Sci Bull 51:55–60

    Google Scholar 

  • Klein H, Lucas SG (2013) The Late Triassic tetrapod ichnotaxon Apatopus lineatus (Bock 1952) and its distribution. New Mex MusNat Hist Sci Bull 61:313–324

    Google Scholar 

  • Klein H, Lucas SG, Voigt S (2015) Revision of the ?Permian-Triassic tetrapod ichnogenus Procolophonichnium Nopsca 1923 with description of the new ichnospecies P. lockleyi. Ichnos 22:155–176

    Article  Google Scholar 

  • Knoll AH (1984) Patterns of extinction in the fossil record of vascular plants. In: Nitecki MH (ed) Extinction. University of Chicago Press, Chicago, pp 21–68

    Google Scholar 

  • Kohút M, Hofmann M, Havrila M, Linnemann U, Havrila J (2017) Tracking an upper limit of the “Carnian Crisis” and/or Carnian stage in the Western Carpathians (Slovakia). Int J Earth Sci (Geol Rundsch). https://doi.org/10.1007/s00531-017-1491-8

  • Kozur H (1993) First evidence of Liassic in the vicinity of Csovar (Hungary) and its paleogeographic and paleotectonic significance. Jahrb Geol Bundesanst 136:89–98

    Google Scholar 

  • Kozur H (2003) Integrated ammonoid, conodont and radiolarian zonation for the Triassic. Hallesches Jahrb r Geowiss B25:49–79

    Google Scholar 

  • Kozur H, Mock R (1991) New middle Carnian and Rhaetian conodonts from Hungary and the Alps. Stratigraphic importance and tectonic implications for the Buda Mountains and adjacent areas. Jahrb Geol Bundesanst 134:271–297

    Google Scholar 

  • Kozur HW, Weems RE (2005) Conchostracan evidence for a late Rhaetian to early Hettangian age for the CAMP volcanic event in the Newark Supergroup, and a Sevatian (late Norian) age for the immediately underlying beds. Hall Jahrb Geowiss B27:21–51

    Google Scholar 

  • Kozur HW, Weems RE (2007) Upper Triassic conchostracan biostratigraphy of the continental rift basins of eastern North America: its importance for correlating Newark Supergroup events with the Germanic Basin and the international geologic time scale. New Mex Mus Nat Hist Sci Bull 41:137–188

    Google Scholar 

  • Kozur HW, Weems RE (2010) The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ, vol 334, pp 315–417

    Google Scholar 

  • Krystyn L, Bouquerel H, Kuerschner W, Richoz S, Gallet Y (2007) Proposal for a candidate GSSP for the base of the Rhaetian Stage. New Mex Mus Nat Hist Sci Bull 41:189–199

    Google Scholar 

  • Kuerschner WM, Bonis NR, Krystyn L (2007) Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section—Northern Calcareous Alps (Austria). Palaeog Palaeoclimat Palaeoecol 244:257–280

    Article  Google Scholar 

  • Kummel B (1957) Triassic Ammonoidea. In: Arkell WJ, Furnish WM, Kummel B, Miller AK, Moore RC, Schindewolf O, Sylvester-Bradley PC, Wright CW (eds) Treatise on invertebrate paleontology, Part L, Mollusca 4. Geological Society of America and University of Kansas Press, Cephalopoda

    Google Scholar 

  • Kürschner WM, Herngreen GFW (2010) Triassic palynology of central and northwestern Europe: a review of palynofloral diversity patterns and biostratigraphic subdivisions. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ 334:263–283

    Google Scholar 

  • Kustatscher E, Ash SR, Karasev E, Pott C, Vajda V, Yu J, McLoughlin S (2017) The Late Triassic flora. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Kutzbach JE, Gallimore RG (1989) Pangaean climates: megamonsoons of the megacontinent. J Geophys Res 94:3341–3357

    Google Scholar 

  • Langer MC, Ezcurra MD, Bittencourt JS, Novas FE (2009) The origin and early evolution of dinosaurs. Biol Rev 84:1–56

    Google Scholar 

  • Lathuiliere B, Marchal D (2009) Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time. Terra Nova 21:57–66

    Article  Google Scholar 

  • Leinfelder RR, Schmid DU, Nose M, Werner W (2002) Jurassic reef patterns—the expression of a changing globe. In: Kiessling W, Flugel E, Golonka J (eds) Phanerozoic reef patterns: SEPM Spec Publ 72

    Google Scholar 

  • Lindström S (2016) Palynofloral patterns of terrestrial ecosystem change during the end-Triassic event–a review. Geol Mag 153:223–251

    Article  Google Scholar 

  • Long RA, Murry PA (1995) Late Triassic (Carnian and Norian) tetrapods from the southwestern United States. New Mex Mus Nat Hist Sci Bull 4:1–254

    Google Scholar 

  • Longridge LM, Carter ES, Smith PL, Tipper HW (2007) Early Hettangian ammonites and radiolarians from the Queen Charlotte Islands, British Columbia and their bearing on the definition of the Triassic–Jurassic boundary. Palaeogeog Palaeoclimat Palaeoecol 244:142–169

    Article  Google Scholar 

  • Lucas SG (1994) Triassic tetrapod extinctions and the compiled correlation effect. Canad Soc Petrol Geol Mem 17:869–875

    Google Scholar 

  • Lucas SG (1998) Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeog Palaeoclimat Palaeoecol 143:347–384

    Article  Google Scholar 

  • Lucas SG (2007) Tetrapod footprint biostratigraphy and biochronology. Ichnos 14:5–38

    Article  Google Scholar 

  • Lucas SG (2008) Global Jurassic tetrapod biochronology. Volum Jura 6:99–108

    Google Scholar 

  • Lucas SG (2010a) The Triassic timescale: an introduction. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ, vol 334, pp 1–16

    Google Scholar 

  • Lucas SG (2010b) The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ, vol 334, pp 447–500

    Google Scholar 

  • Lucas SG (2012) The extinction of the conulariids. Geosci 2:1–10

    Article  Google Scholar 

  • Lucas SG (2015) Age and correlation of Late Triassic tetrapods from southern Poland. Ann Soc Geol Pol 85:627–635

    Google Scholar 

  • Lucas SG (2016) Two new, substrate-controlled nonmarine ichnofacies. Ichnos 23:248–261

    Article  Google Scholar 

  • Lucas SG (2017a) Permian tetrapod extinction events. Earth-Sci Rev 170:31–60

    Article  Google Scholar 

  • Lucas SG (2017b) The best sections method of studying mass extinctions. Lethaia. https://doi.org/10.1111/let.12237

  • Lucas SG (2017c) The Late Triassic timescale. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Lucas SG (2017d) Late Triassic ammonoids: distribution, biostratigraphy and biotic events. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Lucas SG (2017e) Late Triassic terrestrial tetrapods: biostratigraphy, biochronology and biotic events. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Lucas SG, Heckert AB (2011) Late Triassic aetosaurs as the trackmaker of the tetrapod footprint ichnotaxon Brachychirotherium. Ichnos 18:197–208

    Article  Google Scholar 

  • Lucas SG, Huber P (2003) Vertebrate biostratigraphy and biochronology of the nonmarine Late Triassic. In: LeTourneau PM, Olsen PE (eds) The great rift valleys of Pangea in eastern North America. Volume 2. Sedimentology, stratigraphy, and paleontology. Columbia University Press, New York, pp 143–191

    Google Scholar 

  • Lucas SG, Hunt AP (1994) The chronology and paleobiogeography of mammalian origins. In: Fraser NC, Sues HD (eds) In the shadow of dinosaurs. Cambridge University Press, New York, pp 335–351

    Google Scholar 

  • Lucas SG, Tanner LH (2004) Late Triassic extinction events. Albertiana 31:31–40

    Google Scholar 

  • Lucas SG, Tanner LH (2007a) Tetrapod biostratigraphy and biochronology of the Triassic-Jurassic transition on the southern Colorado Plateau, USA. Palaeogeog Palaeoclimat Palaeoecol 244:242–256

    Article  Google Scholar 

  • Lucas SG, Tanner LH (2007b) The nonmarine Triassic-Jurassic boundary in the Newark Supergroup of eastern North America. Earth-Sci Rev 84:1–20

    Article  Google Scholar 

  • Lucas SG, Tanner LH (2008) Reexamination of the end-Triassic mass extinction. In: Elewa AMT (ed) Mass extinction. Springer Verlag, New York, pp 66–103

    Google Scholar 

  • Lucas SG, Tanner LH (2015) End-Triassic nonmarine biotic events. J Paleogeogr 4:331–348

    Article  Google Scholar 

  • Lucas SG, Wild R (1995) A middle Triassic dicynodont from Germany and the biochronology of Triassic dicynodonts. Stuttg Beit Naturk 220:1–16

    Google Scholar 

  • Lucas SG, Klein H, Lockley MG, Spielmann JA, Gierlinski G, Hunt AP, Tanner LH (2006) Triassic-Jurassic stratigraphic distribution of the theropod footprint ichnogenus Eubrontes. New Meo Muse Nat Hist Sci Bull 37:86–93

    Google Scholar 

  • Lucas SG, Taylor DG, Guex J, Tanner LH, Krainer K (2007a) The proposed global stratotype section and point for the base of the Jurassic System in the New York Canyon area, Nevada, USA. New Mex Mus Nat Hist Sci Bull 40:139–168

    Google Scholar 

  • Lucas SG, Hunt AP, Heckert AB, Spielmann JA (2007b) Global Triassic tetrapod biostratigraphy and biochronology: 2007 status. New Mexo Muse Nat Hist Sci Bull 41:229–240

    Google Scholar 

  • Lucas SG, Tanner LH, Donohoo-Hurley LL, Geissman JW, Kozur HW, Heckert AB, Weems RE (2011) Position of the Triassic-Jurassic boundary and timing of the end- Triassic extinctions on land: data from the Moenave Formation on the southern Colorado Plateau, USA. Palaeogeogr Palaeoclimatol Palaeoecol 302:194–205

    Google Scholar 

  • Lucas SG, Tanner LH, Kozur HW, Weems RE, Heckert AB (2012) The late Triassic timescale: age and correlation of the Carnian-Norian boundary. Earth-Sci Rev 114:1–8

    Article  Google Scholar 

  • Lucas SG, Szajna MJ, Lockley MG, Fillmore DL, Simpson EL, Klein H, Boyland J, Hartline BW (2014) The Middle-Late Triassic tetrapod footprint ichnogenus Gwyneddichnium. New Mex Mus Nat Hist Sci Bull 62:135–156

    Google Scholar 

  • Maisch MW, Kapitzke M (2010) A presumably marine phytosaur (Reptilia: Archosauria) from the pre-planorbis beds (Hettangian) of England. Neues Jahrb Geol Paläont Abhand 257:373–379

    Article  Google Scholar 

  • Mander L, Twitchett RJ, Benton MJ (2008) Palaeoecology of the Late Triassic extinction event in the SW UK. J Geol Soc Lond 165:319–332

    Article  Google Scholar 

  • Mander L, Kürschner WM, McElwain JC (2010) An explanation for conflicting records of Triassic-Jurassic plant diversity. Proc Nat Acad Sci USA 107:15351–15356

    Article  Google Scholar 

  • Mander L, Wesseln CJ, McElwain JC, Punyasena SW (2012) Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction. PLoS One 7(11):e49153

    Article  Google Scholar 

  • Marshall C (2005) Comment on “Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo basin, South Africa”. Science 308:1413–1414

    Article  Google Scholar 

  • Martin RE (2001) Marine plankton. In: DEG B, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 309–312

    Chapter  Google Scholar 

  • Martindale RC, Berelson WM, Corsetti FA, Bottjer DJ, West J (2012) Constraining carbonate chemistry at a potential ocean acidification event (the Triassic–Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeogr Palaeoclimatol Palaecol 350-352:114–123

    Article  Google Scholar 

  • Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, DeMin A (1999) Extensive 200-million-year-old continental flood basalts of the central Atlantic Magmatic province. Science 284:616–618

    Article  Google Scholar 

  • Marzoli A, Jourdan F, Puffer JH, Cuppone T, Tanner LH, Weems RE, Bertrand H, Cirilli S, Bellieni G, De Min A (2011) Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern U.S.A. Lithos 122:175–188

    Article  Google Scholar 

  • Marzoli A, Callagaro S, Dal Corso J, Youbi N, Bertrand H, Reisberg L, Chiaradia M, Merle R, Jourdan F (2017) The Central Atlantic magmatic province: a review. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557

    Article  Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390

    Article  Google Scholar 

  • McElwain JC, Popa ME, Hesselbo SP, Haworth M, Surlyk F (2007) Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiol 33:547–573

    Article  Google Scholar 

  • McElwain JC, Wagner PJ, Hesselbo SP (2009) Fossil plant relative abundances indicate sudden loss of late Triassic biodiversity in East Greenland. Science 324:1554–1556

    Article  Google Scholar 

  • McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML (2004) Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr Palaeoclimatol Palaeoecol 211:289–297

    Article  Google Scholar 

  • McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML (2013) A new ecological-severity ranking ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol 370:260–270

    Article  Google Scholar 

  • McHone JG (1996) Broad-terrane Jurassic flood basalts across northeastern North America. Geology 24:319–322

    Article  Google Scholar 

  • McHone JG (2003) Volatile emissions from central Atlantic magmatic province basalts: mass assumptions and environmental consequences. In: Hames WE, McHone JG, Renne PR, Ruppel C (eds) The central Atlantic magmatic province: perspectives from the rifted fragments of Pangea. Am Geophys Union Monogr 136:241–254

    Google Scholar 

  • McHone JG, Puffer JH (1996) Hettangian flood basalts across the Pangaean rift. Connecticut State Geol Nat Hist Surv Nat Res Center Misc Rep 1:29

    Google Scholar 

  • McRoberts CA (1994) The Triassic-Jurassic ecostratigraphic transition in the Lombardian Alps, Italy. Palaeogeogr Palaeoclimatol Palaeoecol 110:145–166

    Article  Google Scholar 

  • McRoberts CA (2007) Diversity dynamics and evolutionary ecology of Middle and Late Triassic halobiid and monotid bivalves. New Mex Mus Nat Hist Sci Bull 41:272

    Google Scholar 

  • McRoberts CA (2010) Biochronology of Triassic bivalves. Geol Soc London Spec Publ 334:201–219

    Article  Google Scholar 

  • McRoberts CA, Newton CR (1995) Selective extinction among end-Triassic European bivalves. Geology 23:102–104

    Article  Google Scholar 

  • McRoberts CA, Newton CR, Allasinaz A (1995) End-Triassic bivalve extinction: Lombardian Alps, Italy. Hist Biol 9:297–317

    Article  Google Scholar 

  • McRoberts CA, Furrer H, Jones DS (1997) Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from western Austria based on palaeoecological and geochemical data. Palaeogeogr Palaeoclimatol Palaeoecol 136:79–95

    Article  Google Scholar 

  • McRoberts CA, Krystyn L, Hautmann M (2012) Macrofaunal response to the end-Triassic mass extinction in the west-Tethyan Kössen basin, Austria. PALAIOS 27:607–616

    Article  Google Scholar 

  • Melnikova GK, Roniewicz E (2012) Early Jurassic corals of the Pamir Mountains—a new Triassic-Jurassic transitional fauna. Geolog Belgica 15:376–381

    Google Scholar 

  • Milner AR (1993) Amphibian-grade Tetrapoda. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 665–679

    Google Scholar 

  • Milner AR (1994) Late Triassic and Jurassic amphibians: fossil record and phylogeny. In: Fraser NC, Sues H-D (eds) In the shadow of the dinosaurs. Cambridge University Press, Cambridge, UK, pp 5–22

    Google Scholar 

  • Morbey JS (1975) The palynostratigraphy of the Rhaetian stage, Upper Triassic in the Kendelbachgraben, Austria. Palaeontograph B 152:1–75

    Google Scholar 

  • Mostler H (1990) Mikroskleren von Demispongien (Porifera) aus dem basalen Jura der Nördlichen Kalkalpen. Geol Paläontol Mitteil Innsbruck 17:119–142

    Google Scholar 

  • Mostler H, Scheuring R, Ulrichs M (1978) Zur Mega-, Mikrofauna und Mikroflora der Kossenen Schichten (alpine Obertrias) von Weissloferbach in Tirol unter besonderer Berucksichtigung der in der suessi- und marshi- Zone auftreitenden Conodonten. Osterreich Akad Wissensch Erdwissensch Komm Schriften 4:141–174

    Google Scholar 

  • Nesbitt SJ (2011) The early evolution of archosaurs: relationships and the origin of major clades. Bull Am Mus Nat Hist 352:1–292

    Article  Google Scholar 

  • Nesbitt SJ, Brusatte SL, Desojo JB, Liparini A, De Franca MAG, Weinbaum JC, Gower DJ (2013) Rauisuchia. In: Nesbitt SJ, Desojo JB, Irmis RB (eds) Anatomy, phylogeny and palaeobiology of early archosaurs and their kin, Geol Soc London Spec Publ 379:241–274

    Google Scholar 

  • Newell ND (1952) Periodicity in invertebrate evolution. J Paleontol 26:371–385

    Google Scholar 

  • Newell ND (1956) Catastrophism and the fossil record. Evolution 10:97–101

    Article  Google Scholar 

  • Newell ND (1962) Paleontological gaps and geochronology. J Paleontol 36:592–610

    Google Scholar 

  • Newell ND (1963) Crises in the history of life. Sci Amer 208:76–92

    Article  Google Scholar 

  • Newell ND (1967) Paraconformities. In: Teichert C, Yochelson EL (eds) Essays in paleontology and stratigraphy, R.C. Moore commemorative volume. University of Kansas Press, Lawrence, Kansas, pp 349–367

    Google Scholar 

  • Newham E, Benson R, Upchurch P, Goswani A (2014) Mesozoic mammaliaform diversity: the effect of sampling corrections on reconstructions of evolutionary dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 412:32–44

    Article  Google Scholar 

  • Niedźwiedzki G (2011) A Late Triassic dinosaur-dominated ichnofauna from the Tomanová Formation of the Tatra Mountains, central Europe. Acta Palaeontol Pol 56:291–300

    Article  Google Scholar 

  • Niklas KJ, Tiffney BH, Knoll AH (1983) Patterns in vascular land plant diversification: a statistical analysis at the species level. Nature 303:614–661

    Article  Google Scholar 

  • Nudds JR, Sepkoski JJ Jr (1993) Coelenterata. In: Benton MJ (ed) The Fossil Record 2. Chapman & Hall, London, pp 101–124

    Google Scholar 

  • O’Dogherty L, Guex J (2002) Rates and pattern of evolution among Cretaceous radiolarians: relations with global paleoceanographic events. Micropaleontol 202:1–22

    Google Scholar 

  • O’Dogherty L, Carter ES, Gorican S, Dumitrica P (2010) Triassic radiolarian biostratigraphy. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ, vol 334, pp 163–200

    Google Scholar 

  • Ogg JG (2012a) Triassic. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geologic Timescale 2012. Volume 2. Elsevier, Amsterdam, pp 681–730

    Google Scholar 

  • Ogg JG (2012b) Jurassic. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geologic Timescale 2012. Volume 2. Elsevier, Amsterdam, pp 731–791

    Google Scholar 

  • Ogg JG, Huang C, Hinnov L (2014) Triassic timescale status: a brief overview. Albertiana 41:3–30

    Google Scholar 

  • Olsen PE, Galton PM (1984) A review of the reptile and amphibian assemblages from the Stormberg of South Africa, with special emphasis on the footprints and the age of the Stormberg. Paleontol Afric 25:87–110

    Google Scholar 

  • Olsen PE, Rainforth EC (2003) The Early Jurassic ornithischian dinosaur ichnogenus Anomoepus. In: LeTourneau PM, Olsen PE (eds) The great rift valleys of Pangea in eastern North America. Volume 2. Sedimentology, stratigraphy, and paleontology. Columbia University Press, New York, pp 314–368

    Google Scholar 

  • Olsen PE, Sues H-D (1986) Correlation of continental Late Triassic and Early Jurassic sediments, and patterns of the Triassic-Jurassic tetrapod transition. In: Padian K (ed) The beginning of the age of dinosaurs. Cambridge Univ Press, Cambridge, UK, pp 321–351

    Google Scholar 

  • Olsen PE, Shubin NH, Anders MH (1987) New Early Jurassic tetrapod assemblages constrain Triassic-Jurassic tetrapod extinction event. Science 237:1025–1029

    Article  Google Scholar 

  • Olsen PE, Fowell SJ, Cornet B (1990) The Triassic/Jurassic boundary in continental rocks of eastern North America; a progress report. Geol Soc Am Spec Pap 247:585–593

    Google Scholar 

  • Olsen PE, Schlische RW, Fedosh MS (1996) 580 ky duration of the Early Jurassic flood basalt event in eastern North America estimated using Milankovitch cyclostratigraphy. Mus North Ariz Bull 60:11–22

    Google Scholar 

  • Olsen PE, Smith JB, McDonald NG (1998) Type material of the type species of the classic theropod footprint genera Eubrontes, Anchisauripus, and Grallator (Early Jurassic, Hartford and Deerfield basins, Connecticut and Massachusetts, U. S. A.) J Vert Paleontol 18:586–601

    Article  Google Scholar 

  • Olsen PE, Kent DV, Sues HD, Koeberl C, Huber H, Montanari A, Rainforth EC, Powell SJ, Szajna MJ, Hartline BW (2002a) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurasic boundary. Science 296:1305–1307

    Article  Google Scholar 

  • Olsen PE, Koeberl C, Huber H, Montanari A, Fowell SJ, Et-Touhani M, Kent DV (2002b) The continental Triassic-Jurassic boundary in central Pangea: recent progress and preliminary report of an Ir anomaly. Geol Soc Am Spec Pap 356:505–522

    Google Scholar 

  • Olson EC (1982) Extinction of Permian and Triassic nonmarine vertebrates. Geol Soc Am Spec Pap 190:501–511

    Google Scholar 

  • Onoue T, Sato H, Nakamura T, Noguchi T, Hidaka Y, Shiraid N, Ebihara M, Osawa T, Hatsukawa Y, Toh Y, Koizumi M, Harada H, Orchard MJ, Nedachig M (2012) Deep sea record of impact apparently unrelated to mass extinction in the Late Triassic. Proc Natl Acad Sci USA 109:19134–19139. https://doi.org/10.1073/pnas.1209486109

  • Onoue T, Sato H, Yamashita D, Ikehara M, Yasukawa K, Fujinaga K, Kato Y, Matsuoka A (2016) Bolide impact triggered the Late Triassic extinction event in equatorial Panthalassa. Sci Rep 6:29609. https://doi.org/10.1038/srep29609

    Article  Google Scholar 

  • Orbell G (1973) Palynology of the British Rhaeto-Liassic. Bull Geol Soc Great Brit 44:1–44

    Google Scholar 

  • Orchard MJ (2003) Changes in conodont faunas through the Upper Triassic and implications for boundary definitions. Geol Assoc Canada, Vancouver 2003 Meeting, Abs Vol 28: CD-ROM

    Google Scholar 

  • Orchard MJ (2010) Triassic conodonts and their role in stage boundary definition. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ, vol 334, pp 139–161

    Google Scholar 

  • Orchard MJ, Carter ES, Lucas SG, Taylor DG (2007) Rhaetian (Upper Triassic) conodonts and radiolarians from New York Canyon, Nevada, USA. Albertiana 35:59–65

    Google Scholar 

  • Pálfy J (2003) Volcanism of the central Atlantic magmatic province as a potential driving force in the end-Triassic mass extinction. AGU Geophys Monogr 136:255–267

    Google Scholar 

  • Pálfy J, Kocsis TÁ (2014) Volcanism of the central Atlantic magmatic province as the trigger of environmental and biotic changes around the Triassic-Jurassic boundary. In: Keller G, Kerr AC (eds) Volcanism, impacts and mass extinctions: causes and effects. Geol Soc Am Spec Pap 505:245–261

    Google Scholar 

  • Pálfy J, Zajzon N (2012) Environmental changes across the Triassic-Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (northern Calcareous Alps, Austria). Earth Planet Sci Lett 335–336:121–134

    Article  Google Scholar 

  • Pálfy J, Demeny A, Haas J, Htenyi M, Orchard MJ, Veto I (2001) Carbon isotope anomaly at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29:1047–1050

    Article  Google Scholar 

  • Pálfy J, Demény A, Haas J, Carter ES, Görög A, Halász D, Oravecz-Scheffer A, Hetényi M, Márton E, Orchard MJ, Ozsvárt P, Vetö I, Zajzon N (2007) Triassic-Jurassic boundary events inferred from integrated stratigraphy of the Csövár section, Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 244:11–33

    Article  Google Scholar 

  • Parfitt EA, Wilson L (2000) Impact of basaltic eruptions on climate. Geol Soc Am Abs Prog 32(7):501

    Google Scholar 

  • Parrish JT (1993) Climate of the supercontinent Pangea. J Geol 101:215–253

    Article  Google Scholar 

  • Parrish JT, Peterson F (1988) Wind direction predicted from global circulation models, and wind direction directions determined from eolian sandstones of the Western United States—a comparison. Sed Geol 56:261–282

    Article  Google Scholar 

  • Pedersen KR, Lund JJ (1980) Palynology of the plant-bearing Rhaetian to Hettangian Kap Stewart Formation, Scoresby Sund, East Greenland. Rev Palaeobot Palynol 31:1–69

    Article  Google Scholar 

  • Peterffy O, Calner M, Vajda V (2016) Early Jurassic microbial mats—A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeogr Paleoclimatol Palaeoecol 464:76–85

    Article  Google Scholar 

  • Petersen HI, Lindström S (2012) Synchronous wildfire activity rise and mire deforestation at the Triassic–Jurassic boundary. PLoS One 7:e47236

    Article  Google Scholar 

  • Pieńkowski G, Niedźwiedzki G, Waksmundzka M (2012) Sedimentological, palynological and geochemical studies of the terrestrial Triassic-Jurassic boundary in northwestern Poland. Geo Mag 149:308–332

    Article  Google Scholar 

  • Pott C, McLoughlin S (2009) Bennettitalean foliage in the Rhaetian-Bajocian (latest Triassic-Middle Jurassic) floras of Scania, southern Sweden. Rev Palaeobot Palynol 158:117–166

    Article  Google Scholar 

  • Prothero DR (2015) Garbage in, garbage out: the effect of immature taxonomy on database compilations of North American fossil mammals. New Mex Mus Nat Hist Sci Bull 67:257–264

    Google Scholar 

  • Racki G (2003) Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeogr Palaeoclimatol Palaeoecol 154:107–132

    Article  Google Scholar 

  • Racki G (2012) The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. Acta Palaeontol Polon 57:681–702

    Article  Google Scholar 

  • Racki G, Cordey F (2000) Radiolarian paleoecology and radiolarites: is the present the key to the past? Earth-Sci Rev 52:83–120

    Article  Google Scholar 

  • Rainforth EC (2003) Revision and re-evaluation of the Early Jurassic dinosaurian ichnogenus Otozoum. Palaeontology 46:803–838

    Article  Google Scholar 

  • Rakús M (1993) Late Triassic and Early Jurassic phylloceratids from the Salzkammergut (Northern Calcareous Alps). Jahrb Geol Bundes-Anstalt 136:933–963

    Google Scholar 

  • Ramezani J, Bowring SA, Pringle M, Winslow FD III, Rasbury ET (2005) The Manicouagan impact melt rock: a proposed standard for intercalibration of U-Pb and 40Ar/39/Ar isotopic systems. 15th VM Goldschmidt Conf Abstr Vol A321

    Google Scholar 

  • Renesto S, Dalla Vecchia FM (2017) Late Triassic marine reptiles. In: Tanner, LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Richoz S, van de Schootbrugge B, Pross J, Püttmann W, Quan TM, Lindström S, Heunisch C, Fiebig J, Maquil R, Schouten S, Hauzenberger CA, Wignall PB (2012) Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat Geosci 5:662–667

    Article  Google Scholar 

  • Rigo M, Preto N, Roghi G, Tateo F, Mietto P (2007) A rise in the carbonate compensation depth of western Tethys in the Carnian (Late Triassic): deep-water evidence for the Carnian pluvial event. Palaeogeogr Palaeoclimatol Palaeoecol 246:188–205

    Article  Google Scholar 

  • Rigo M, Bertinelli A, Concheri G, Gattolin G, Godfrey L, Katz ME, Maron M, Mietto P, Muttoni G, Sprovieri M, Stellin F, Zaffani M (2016) The Pignola-Abriola section (southern Appenines, Italy): a new GSSP candidate for the base of the Rhaetian Stage. Lethaia 49:287–306

    Article  Google Scholar 

  • Romer AS (1966) Vertebrate paleontology, 3rd edn. University of Chicago Press, Chicago. 468 pp

    Google Scholar 

  • Roniewicz E, Morycowa E (1989) Triassic Scleractina and the Triassic/Liassic boundary. Mem Assoc Australas Palaeontol 8:347–354

    Google Scholar 

  • Ros S (2009) Dinámica de la paleodiversidad de los bivalvos del Triásico y Jurásico inferior. PhD dissertation, Universidad de València, Spain, 563 pp

    Google Scholar 

  • Ros S, Echevarría J (2011) Bivalves and evolutionary resilience: old skills and new strategies to recover from the P/T and T/J extinction events. Hist Biol 23:411–429

    Article  Google Scholar 

  • Ros S, Renzi MD, Damboranea SE, Márquez-Alliaga A (2011) Coping between crises: Early Triassic-Early Jurassic bivalve diversity dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 311:184–199

    Article  Google Scholar 

  • Ros S, Renzi MD, Damboranea SE, Márquez-Alliaga A (2012) Part N, revised, volume 1, chapter 25: Early Triassic-Early Jurassic bivalve diversity dynamics. Treatise Online 39:1–19

    Google Scholar 

  • Ruckwied K, Götz AE, Pálfy J, Török Á (2008) Palynology of a terrestrial coal-bearing series across the Triassic/Jurassic boundary (Mecsek Mts, Hungary). Cent Eur Geol 51:1–15

    Article  Google Scholar 

  • Rudwick MJS (1997) Georges Cuvier, Fossil Bones, and Geological Catastrophes. Univ Chicago Press, Chicago. 301 pp

    Book  Google Scholar 

  • Ruhl M, Kuerschner WM, Krystyn L (2009) Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth Planet Sci Lett 281:169–187

    Article  Google Scholar 

  • Ruhl M, Veld H, Kuerschner WM (2010) Sedimentary organic matter characterization of the Triassic-Jurassic boundary GSSP at Kuhjoch (Austria). Earth Planet Sci Lett 292:17–26

    Article  Google Scholar 

  • Ruhl M, Bonis NR, Reichart G-J, Sinninghe D, Jaap S, Kuerschner WF (2011) Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333:430–434

    Article  Google Scholar 

  • Salamon MA, Niedźwiedzki R, Gorzelak P, Lach R, Surmik D (2012) Bromalites from the Middle Triassic of Poland and the rise of the Mesozoic marine revolution. Palaeogeogr Palaeoclimatol Palaeoecol 321-322:142–150

    Article  Google Scholar 

  • Sandoval J, O’Dogherty L, Guex J (2001) Evolutionary rates of Jurassic ammonites in relation to sea-level fluctuations. PALAIOS 16:311–335

    Article  Google Scholar 

  • Sato H, Shirai N, Ebihara M, Onoue T, Kiyokawa S (2016) Sedimentary PGE signatures in the Late Triassic ejecta deposits from Japan: implications for the identification of impactor. Paleogeogr Palaeoclimat Palaeoecol 442:36–47

    Article  Google Scholar 

  • Schäfer P, Fois E (1987) Systematics and evolution of Triassic Bryozoa. Geol Palaeontol 21:173–225

    Google Scholar 

  • Schaller MF, Wright JD, Kent DV (2011) Atmospheric pCO2 perturbations associated with the Central Atlantic magmatic province. Science 331:1404–1409

    Article  Google Scholar 

  • Schaller MF, Wright JD, Kent DV, Olsen PE (2012) Rapid emplacement of the Central Atlantic Magmatic Province as net sink for CO2. Earth Planet Sci Lett 323-324:27–39

    Article  Google Scholar 

  • Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharov M (2008) Precise U-Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sci Lett 267:266–275

    Article  Google Scholar 

  • Schmidt A, Skeffington RA, Thordarson T, Self S, Forster PM et al (2016) Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat Geosci 9:77–82

    Article  Google Scholar 

  • Schmieder M, Buchner E, Schwarz WH, Trieloff M, Lambert P (2010) A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteorit Planet Sci 45:1225–1242

    Google Scholar 

  • Schoch RR, Milner AR (2000) Stereospondyli. Encycl Paleoherpetol 3B:1–203

    Google Scholar 

  • van de Schootbrugge B, Tremolada F, Rosenthal Y, Bailey TR, Feist-Burkhardt S, Brinkhuis H, Pross J, Kent DV, Falkowski PG (2007) End-Triassic calcification crisis and blooms of organic-walled ‘disaster species. Palaeogeogr Palaeoclim Palaeoecol 244:126–141

    Article  Google Scholar 

  • van de Schootbrugge, B, Payne JL, Tomasovych A, Pross J, Fiebig J, Benbrahim M, Föllmi KB, Quan TM (2008) Carbon cycle perturbation and stabilization in the wake of theTriassic-Jurassic boundary mass-extinction event. Geochem Geophys Geosys 9. https://doi.org/10.1029/2007GC001914

  • van de Schootbrugge B, Quan T, Lindström S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling H-G, Richoz S, Rosenthal Y, Falkowski PG (2009) Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nat Geosci 2:589–594

    Article  Google Scholar 

  • van de Schootbrugge B, Bachan A, Suan G, Richoz S, Payne JL (2013) Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass-extinction. Palaeontology 56(4):685–709

    Article  Google Scholar 

  • Schuurman WML (1979) Aspects of Late Triassic palynology. 3. Palynology of latest Triassic and earliest Jurassic deposits of the northern limestone Alps in Austria and southern Germany, with special reference to a palynological characterization of the Rhaetian stage in Europe. Rev Palaeobot Palynol 27:53–75

    Article  Google Scholar 

  • Sepkoski JJ Jr (1982) Mass extinctions in the Phanerozoic oceans: a review. Geol Soc Am Spec Pap 190:283–289

    Google Scholar 

  • Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinctions: a perspective from global databases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 35–53

    Chapter  Google Scholar 

  • Shepherd HME (2013) Nearing the end: Reef building corals and bivalves in the Late Triassic and comparing corals and bivalves before and after the end-Triassic mass extinction using a taxonomic database. ms thesis, University of Montana, Missoula, 90 pp

    Google Scholar 

  • Shubin NH, Olsen PE, Sues H-D (1994) Early Jurassic small tetrapods from the McCoy Brook Formation of Nova Scotia, Canada. In: Fraser NC, Sues HD (eds) In the shadow of dinosaurs: early Mesozoic tetrapods. Cambridge Univ Press, Cambridge, pp 242–250

    Google Scholar 

  • Signor PW III, Lipps JH (1982) Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Am Spec Pap 190:291–296

    Google Scholar 

  • Sigurdsson H (1990) Assessment of atmospheric impact of volcanic eruptions. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history. Geol Soc Am Spec Pap 247:99–110

    Google Scholar 

  • Silvestri SM, Szajna MJ (1993) Biostratigraphy of vertebrate footprints in the Late Triassic section of the Newark Basin, Pennsylvania: reassessment of stratigraphic ranges. New Mex Mus Nat Hist Sci Bull 3:439–445

    Google Scholar 

  • Simms MJ, Ruffell AH (1989) Synchroneity of climatic change and extinctions in the Late Triassic. Geology 17:265–268

    Article  Google Scholar 

  • Simms MJ, Ruffell AH (1990) Climatic and biotic change in the Late Triassic. J Geol Soc Lond 147:321–327

    Article  Google Scholar 

  • Simpson GG (1952) Periodicity in vertebrate evolution. J Paleontol 26:359–370

    Google Scholar 

  • Skelton PW, Benton MJ (1993) Mollusca: Rostroconchia, Scaphopoda and Bivalvia. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 237–263

    Google Scholar 

  • Smith RMH, Marsicano CA, Wilson JA (2009) Sedimentology and paleoecology of a diverse Early Jurassic tetrapod tracksite in Lesotho, southern Africa. PALAIOS 24:672–684

    Article  Google Scholar 

  • Spielmann JA, Lucas SG, Hunt AP (2013) The first Norian (Revueltian) rhynchosaur: Bull Canyon Formation, New Mexico, U.S.A. New Mex Mus Nat Hist Sci Bull 61:562–566

    Google Scholar 

  • Stanley GD Jr (1988) The history of early Mesozoic reef communities: a three-step process. PALAIOS 3:170–183

    Article  Google Scholar 

  • Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic, Plenum, NY, pp 1–39

    Chapter  Google Scholar 

  • Stanley GD Jr, Beauvais L (1994) Corals from an Early Jurassic coral reef in British Columbia—refuge on an oceanic island reef. Lethaia 27:35–47

    Google Scholar 

  • Stanton RJ, Flügel E (1989) Problems with reef models: The Late Triassic Steinplatte ‘reef’ (Northern Calcareous Alps, Austria). Facies 20:1–138

    Article  Google Scholar 

  • Stanton RJ, Flügel E (1995) “An accretionary distally steepened ramp at an intrashelf basin margin” An alternative explanation for the Upper Triassic Steinplatte ‘reef’ (Northern Calcareous Alps, Austria). Sed Geol 95:269–286

    Article  Google Scholar 

  • Steinthorsdottir M, Jeram AJ, McElwain JC (2011) Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 308:418–432

    Article  Google Scholar 

  • Steinthorsdottir M, Tosolini A-M, McElwain JC (2015) Evidence for insect and annelid activity across the Triassic-Jurassic transition of East Greenland. PALAIOS 30:597–607

    Article  Google Scholar 

  • Stocker MR, Butler RJ (2013) Phytosauria. In: Nesbitt SJ, Desojo JB, Irmis RB (eds) Anatomy, phylogeny and palaeobiology of early archosaurs and their kin. Geol Soc London Spec Publ 379:91–118

    Google Scholar 

  • Suarez CA, Knobbe TK, Crowley JL, Kirkland JI, Milner ARC (2017) A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: Implications for the terrestrial end Triassic extinction. Earth Planet Sci Lett 475:83–93

    Google Scholar 

  • Sues HD, Olsen PE (2015) Stratigraphic and temporal context and faunal diversity of Permian-Jurassic continental tetrapod assemblages from the Fundy rift basin, eastern Canada. Atlant Geol 51:139–205

    Article  Google Scholar 

  • Sugiyama K (1997) Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino Terrane, Central Japan. Bull Mizunami Fossil Mus 24:115–193

    Google Scholar 

  • Sweet WC (1988) The Conodonta. Clarendon Press, New York. 212 pp

    Google Scholar 

  • Szajna MJ, Silvestri SM (1996) A new occurrence of the ichnogenus Brachychirotherium: implications for the Triassic-Jurassic mass extinction event. Mus North Ariz Bull 60:275–283

    Google Scholar 

  • Tackett LS, Bottjer DJ (2012) Faunal succession of Norian (Late Triassic) level-bottom benthos in the Lombardian basin: implications for the timing, rate, and nature of the early Mesozoic marine revolution. PALAIOS 27:585–593

    Article  Google Scholar 

  • Tagle R, Schmitt RT, Erzinger J (2009) Identification of the projectile component in the impact structures Rochechouart, France and Sääksjärvi, Finland: implications for the impactor population for the earth. Geochim Cosmochim Acta 73:4891–4906

    Article  Google Scholar 

  • Tanner LH (2017) Climates of the Late Triassic: perspectives, proxies and problems. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Tanner LH, Kyte FT (2005) Anomalous iridium enrichment at the Triassic–Jurassic boundary, Blomidon Formation, Fundy basin, Canada. Earth Planet Sci Lett 240:634–641

    Article  Google Scholar 

  • Tanner LH, Lucas SG (2016) Stratigraphic distribution and significance of a 15 million-year record of fusain in the Upper Triassic Chinle Group, southwestern USA. Palaeogeogr Palaeoclimatol Palaecol 461:261–271

    Article  Google Scholar 

  • Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth Sci Rev 65:103–139

    Google Scholar 

  • Tanner LH, Smith DL, Allan A (2007) Stomatal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano, Hawaii. Geophys Res Lett 34:L15807. https://doi.org/10.1029/2007GL030320

    Article  Google Scholar 

  • Tanner LH, Kyte FT, Walker AE (2008) Multiple Ir anomalies in uppermost Triassic to Jurassic-age strata of the Blomidon Formation, Fundy basin, eastern Canada. Earth Planet Sci Lett 274:103–111

    Article  Google Scholar 

  • Tanner LH, Kyte FT, Richoz S, Krystyn L (2016) Distribution of iridium and associated geochemistry across the Triassic-Jurassic boundary in sections at Kuhjoch and Kendlbach, Northern Calcareous Alps, Austria. Palaeogeogr Palaeoclimatol Palaecol 449:13–26. https://doi.org/10.1016/j.palaeo.2016.01.011

    Article  Google Scholar 

  • Tappan H (1968) Primary production, isotopes, extinctions and the atmosphere. Palaeogeogr Palaeoclimatol Palaeoecol 4:187–210

    Article  Google Scholar 

  • Tappan H, Loeblich AR Jr (1973) Evolution of oceanic plankton. Earth-Sci Rev 9:207–240

    Article  Google Scholar 

  • Taylor DG, Boelling K, Guex J (2000) The Triassic/Jurassic System boundary in the Gabbs Formation, Nevada. In: Hall RL, Smith PL (eds) Advances in Jurassic Research 2000. Tran Tech Publications Ltd, Zurich, pp 225–236

    Google Scholar 

  • Taylor DG, Guex J, Rakus M (2001) Hettangian and Sinemurian ammonoid zonation for the western Cordillera of North America. Bull Géol l’Univers Laus 350:381–421

    Google Scholar 

  • Teichert C (1988) Crises in cephalopod evolution. In: Marois M (ed) L’évolution dans sa Réalité et ses Diverses Modalités. Fondation Singer-Polignac, Paris, pp 7–64

    Google Scholar 

  • Thibodeau AM, Ritterbush K, Yager JA et al (2017) Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat Commun 7:11147. https://doi.org/10.1038/ncomms11147

    Article  Google Scholar 

  • Thordarson T, Self S, Óskarsson N, Hulsebosch T (1996) Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783-1784 AD Laki (Skaftár Fires) eruption in Iceland. Bull Volcanol 58:205–225

    Article  Google Scholar 

  • Thulborn T, Turner S (2003) The last dicynodont: an Australian Cretaceous relict. Proc Roy Soc Lond B 270:985–993

    Article  Google Scholar 

  • Tintori A (1995) Biomechanical fragmentation in shell beds from the Late Triassic of the Lombardian basin (Northern Italy): preliminary report. Riv Ital Paleontol Stratigraf 101:371–380

    Google Scholar 

  • Tipper HW, Carter ES, Orchard MJ, Tozer ET (1994) The Triassic-Jurassic (T-J) boundary in Queen Charlotte Islands, British Columbia defined by ammonites, conodonts, and radiolarians. Geobios Mém Spec 17:485–492

    Article  Google Scholar 

  • Tomašových A, Siblík M (2007) Evaluating compositional turnover of brachiopod communities during the end-Triassic mass extinction (Northern Calcareous Alps): removal of dominant groups, recovery and community reassembly. Palaeogeogr Palaeoclimatol Palaeoecol 244:170–200

    Article  Google Scholar 

  • Tozer ET (1981a) Triassic Ammonoidea: classification, evolution and relationship with Permian and Jurassic forms. In: House MR, Senior JR (eds) The Ammonoidea. Systematics Association Special Volume 18. Academic Press, London, pp 69–100

    Google Scholar 

  • Tozer ET (1981b) Triassic Ammonoidea: geographic and stratigraphic distribution. In: House MR, Senior JR (eds) The Ammonoidea. Systematics Association Special Volume 18. Academic Press, London, pp 397–431

    Google Scholar 

  • Traverse A (1988) Plant evolution dances to a different beat. Hist Biol 1:277–301

    Article  Google Scholar 

  • Tucker ME, Benton MJ (1982) Triassic environments, climates, and reptile evolution. Palaeogeogr Palaeoclimatol Palaeoecol 40:361–379

    Article  Google Scholar 

  • Ulrichs M (1972) Ostracoden aus den Kössener Schichten und ihre Abhängigkeit von der Ökologie. Mitteilung Gesellsch Geolog Bergbaustudent Österrich 21:661–710

    Google Scholar 

  • de Valais S (2009) Ichnotaxonomic revision of Ameghinichnus, a mammalian ichnogenus from the Middle Jurassic La Matilde Formation, Santa Cruz Province, Argentina. Zootaxa 2203:1–21

    Google Scholar 

  • Vazquez P, Clapham ME (2017) Extinction selectivity among marine fishes during multistressor global change global change in the end-Permian and end-Triassic crises. Geol 45:395–398

    Article  Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiol 3:245–258

    Article  Google Scholar 

  • Vermeij GJ (1983) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton. 527 pp

    Google Scholar 

  • Vishnevskaya V (1997) Development of Palaeozoic-Mesozoic Radiolaria in the Northwestern Pacific rim. Mar Micropalaeont 30:79–95

    Article  Google Scholar 

  • Visscher H, Van Houte M, Brugman WA, Poort RJ (1994) Rejection of a Carnian (late Triassic) “pluvial event” in Europe. Rev Palaeobot Palynol 83:217–226

    Article  Google Scholar 

  • Ward PD, Haggart JW, Carter ES, Wilbur D, Tipper HW, Evans T (2001) Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292:1148–1151

    Article  Google Scholar 

  • Ward PD, Garrison GH, Haggart JW, Kring DA, Beattie MJ (2004) Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic-Jurassic mass extinction. Earth Planet Science Lett 224:589–600

    Article  Google Scholar 

  • Ward PL, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R (2005) Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo basin, South Africa. Science 307:709–714

    Article  Google Scholar 

  • Ward PD, Garrison GH, Williford KH, Kring DA, Goodwin D, Beattie MJ, McRoberts CA (2007) The organic carbon isotopic and paleontological record across the Triassic–Jurassic boundary at the candidate GSSP section at Ferguson Hill, Muller Canyon, Nevada, USA. Palaeogeogr Palaeoclimatol Palaeoecol 244:281–289

    Article  Google Scholar 

  • Weems RE (1992) The “terminal Triassic catastrophic extinction event” in perspective: a review of Carboniferous through Early Jurassic terrestrial vertebrate extinction patterns. Palaeogeogr Palaeoclimatol Palaeoecol 94:1–29

    Article  Google Scholar 

  • Weems RE, Tanner LH, Lucas SG (2016) Synthesis and revision of the lithostratigraphic groups and formations in the upper Permian?-Lower Jurassic Newark Supergroup of eastern North America. Stratigraphy 13:111–153

    Google Scholar 

  • Whiteside JH, Ward PD (2011) Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geol 39:99–102

    Article  Google Scholar 

  • Whiteside JH, Olsen PE, Kent DV, Fowell SJ, Et-Touhami M (2007) Synchrony between the Central Atlantic magmatic province and the Triassic-Jurassic mass-extinction event? Palaeogeogr Palaeoclimatol Palaeoecol 244:345–367

    Article  Google Scholar 

  • Wiedmann J (1973) Upper Triassic heteromorph ammonites. In: Hallam A (ed) Atlas of Paleobiogeography. Elsevier, Amsterdam, pp 235–249

    Google Scholar 

  • Wiedmann J, Kullman J (1996) Crises in ammonoid evolution. In: Landman N et al. (eds) Ammonoid paleobiology. Springer, Topics in Geobiology 13:795–813

    Google Scholar 

  • Wignall PB, Zonneveld JP, Newton RJ, Amor K, Sephton MA, Hartley S (2007) The end Triassic mass extinction record of Williston lake, British Columbia. Paleogeogr Palaeoclimatol Palaeoecol 253:385–406

    Article  Google Scholar 

  • Williford KH, Grice K, Holman A, McElwain JC (2014) An organic record of terrestrial ecosystem collapse and recovery at the Triassic-Jurassic boundary in East Greenland. Geochim Cosmochim Acta 127:251–263

    Article  Google Scholar 

  • Woods AW (1993) A model of the plumes above basaltic fissure eruptions. Geophys Res Lett 20:1115–1118

    Article  Google Scholar 

  • Yapp CJ, Poths H (1996) Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet Sci Lett 137:71–82

    Article  Google Scholar 

  • Zajzon N, Kristaly F, Nemeth T (2012) Detailed clay mineralogy of the Triassic Jurassic boundary section at Kendlbachgraben (northern Calcareous Alps, Austria). Clay Min 47:177–189

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to numerous colleagues whose ideas and work have influenced this article. In particular, we thank Jean Guex, Tony Hallam, Steve Hesselbo, the late Heinz Kozur, Wolfram Kuerschner, Leo Krystyn, Chris McRoberts, Paul Olsen, Josef Pálfy, Geoff Warrington and Rob Weems, not all of whom agree with our conclusions, but all of whom have contributed substantially to our understanding of events across the TJB. Artwork by Matt Celeskey appears in several figures. Adrian Hunt and Karl Krainer provided helpful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer G. Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lucas, S.G., Tanner, L.H. (2018). The Missing Mass Extinction at the Triassic-Jurassic Boundary. In: Tanner, L. (eds) The Late Triassic World. Topics in Geobiology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-68009-5_15

Download citation

Publish with us

Policies and ethics