Artificial Development

  • Tüze Kuyucu
  • Martin A. Trefzer
  • Andy M. Tyrrell
Part of the Emergence, Complexity and Computation book series (ECC, volume 28)


Development as it occurs in biological organisms is defined as the process of gene activity that directs a sequence of cellular events in an organism which brings about the profound changes that occur to the organism. Hence, the many chemical and physical processes which translate the vast genetic information gathered over the evolutionary history of an organism, and put it to use to create a fully formed, viable adult organism from a single cell, is subsumed under the term “development”. This also includes properties of development that go way beyond the formation of organisms such as, for instance, mechanisms that maintain the stability and functionality of an organism throughout its lifetime, and properties that make development an adaptive process capable of shaping an organism to match—within certain bounds—the conditions and requirements of a given environment. Considering these capabilities from a computer science or engineering angle quickly leads on to ideas of taking inspiration from biological examples and translating their capabilities, generative construction, resilience and the ability to adapt, to man-made systems. The aim is thereby to create systems that mimic biology sufficiently so that these desired properties are emergent, but not as excessively as to make the construction or operation of a system infeasible as a result of complexity or implementation overheads. Software or hardware processes aiming to achieve this are referred to as artificial developmental models. This chapter therefore focuses on motivating the use of artificial development, provides an overview of existing models and a recipe for creating them, and discusses two example applications of image processing and robot control.


  1. 1.
    Banzhaf, W., Beslon, G., Christensen, S., Foster, J.A., Kepes, F., Lefort, V., Miller, J.F., Radman, M., Ramsden, J.J.: Guidelines: from artificial evolution to computational evolution: a research agenda. Nat. Rev. Genet. 7, 729–735 (2006)Google Scholar
  2. 2.
    Bentley, P.: Investigations into graceful degradation of evolutionary developmental software. Nat. Comput. Int. J. 4(4):417–437 (2005). doi: 10.1007/s11047-005-3666-7
  3. 3.
    Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 35–43. Morgan Kaufmann, Orlando, Florida, USA. (1999)
  4. 4.
    Bode, H.R.: Head regeneration in hydra. Dev. Dyn. 226, 225–236 (2003)Google Scholar
  5. 5.
    Boers, E.J., Kuiper, H.: Biological Metaphors and the Design of Modular Artificial Neural Networks. Master’s thesis, Leiden University (1992)Google Scholar
  6. 6.
    Bonner, J.T.: The origins of multicellularity. Integr. Biol. Iss. News Rev. 1(1):27–36 (1998)Google Scholar
  7. 7.
    Braitenberg, V.: Brain size and number of neurons: an exercise in synthetic neuroanatomy. J. Comput. Neurosci. 10(1):71–77 (2001)Google Scholar
  8. 8.
    Chavoya, A.: Foundations of Computational, Intelligence Volume 1, Studies in Computational Intelligence, vol. 201/2009, Springer Berlin / Heidelberg, Chap Artificial Development, pp. 185–215 (2009)Google Scholar
  9. 9.
    Claverie, J.M.: What if there are only 30,000 human genes? Science 291(5507):1255–1257 (2001)Google Scholar
  10. 10.
    Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6):823–837 (2015). doi: 10.1109/TEVC.2015.2396199
  11. 11.
    Dawkins, R.: The evolution of evolvability. In: Kumar, S., Bentley, P. (eds.) On Growth Form and Computers, pp. 239–255. Elsevier Academic Press (2003)Google Scholar
  12. 12.
    Dellaert, F., Beer, R.D.: Toward an evolvable model of development for autonomous agent synthesis. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV, MIT Press Cambridge, pp. 246–257. (1994)
  13. 13.
    Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental design. In: GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM, New York, NY, USA, pp. 982–989 (2007). doi: 10.1145/1276958.1277156
  14. 14.
    Doursat, R., Sayama, H., Michel, O.: A review of morphogenetic engineering. Nat. Comput. 12(4):517–535 (2013). doi: 10.1007/s11047-013-9398-1
  15. 15.
    Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems. Proc. Nat. Acad. Sci. U.S.A. 98(24):13,763–13,768 (2001). doi: 10.1073/pnas.231499798
  16. 16.
    Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Proceedings of 4th European Conference on Artificial Life, pp. 205–213 (1997)Google Scholar
  17. 17.
    Federici, D.: Using embryonic stages to increase the evolvability of development. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004), Springer (2004)Google Scholar
  18. 18.
    Flann, N., Jing, H., Bansal, M., Patel, V., Podgorski, G.: Biological development of cell patterns : characterizing the space of cell chemistry genetic regulatory networks. In: 8th European conference (ECAL), Springer, Berlin, Heidelberg (2005)Google Scholar
  19. 19.
    Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development: the multiple mechanisms of morphogenesis. In: Third Artificial Life Workshop Santa Fe, pp. 389–416. New Mexico, USA. (1993)
  20. 20.
    Gordon, T.G.W.: Exploiting Development to Enhance the Scalability of Hardware Evolution. Ph.D. thesis, University College London (2005)Google Scholar
  21. 21.
    Gruau, F.: Neural network synthesis using cellular encoding and the genetic algorithm. Ph.D. thesis, Ecole Normale Supirieure de Lyon, France. (1994)
  22. 22.
    Haddow, P., Hoye, J.: Investigating the effect of regulatory decisions in a development model. In: IEEE Congress on Evolutionary Computation CEC ’09, pp. 293–300 (2009). doi: 10.1109/CEC.2009.4982961
  23. 23.
    Haddow, P.C., Hoye, J.: Achieving a simple development model for 3d shapes: are chemicals necessary? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO), ACM, New York, NY, USA, pp. 1013–1020 (2007). doi: 10.1145/1276958.1277160
  24. 24.
    Haddow, P.C., Tufte, G.: Bridging the genotype-phenotype mapping for digital fpgas. In: EH ’01: Proceedings of the The 3rd NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Society, Washington, DC, USA, p. 109 (2001)Google Scholar
  25. 25.
    Haddow, P.C., Tufte, G., van Remortel, P.: Shrinking the genotype: L-systems for EHW? In: ICES, pp. 128–139. (2001)
  26. 26.
    Harding, S., Miller, J.F., Banzhaf, W.: Self modifying cartesian genetic programming: Parity. In: 2009 IEEE Congress on Evolutionary Computation, pp. 285–292 (2009). doi: 10.1109/CEC.2009.4982960
  27. 27.
    Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming. In: GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM, New York, NY, USA, pp. 1021–1028 (2007). doi: 10.1145/1276958.1277161
  28. 28.
    Harrington, K.I.: A circuit basis for morphogenesis. Theor. Comput. Sci. 633:28–36 (2016). doi: 10.1016/j.tcs.2015.07.002
  29. 29.
    Hornby, G.S., Pollack, J.B.: The Advantages of Generative Grammatical Encodings for Physical Design. IEEE Press, In. In Congress on Evolutionary Computation (2001)CrossRefGoogle Scholar
  30. 30.
    Jakobi, N.: Harnessing morphogenesis. In: International Conference on Information Processing in Cells and Tissues, pp. 29–41. (1995)
  31. 31.
    Kalganova, T.: Bidirectional incremental evolution in extrinsic evolvable hardware. In: Lohn, J., Stoica, A., Keymeulen, D. (eds.) The Second NASA/DoD Workshop on Evolvable Hardware, pp. 65–74. IEEE Computer Society, Palo Alto, California (2000)CrossRefGoogle Scholar
  32. 32.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3):437–467 (1969). doi: 10.1016/0022-5193(69)90015-0
  33. 33.
    Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford University Press (1996)Google Scholar
  34. 34.
    Kitano, H.: A simple model of neurogenesis and cell differentiation based on evolutionary large-scale chaos. Artif. Life 2(1):79–99 (1995)Google Scholar
  35. 35.
    Kitano, H.: Building complex systems using developmental process: an engineering approach. In: ICES ’98: Proceedings of the Second International Conference on Evolvable Systems, Springer, London, UK, pp. 218–229 (1998)Google Scholar
  36. 36.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)MATHGoogle Scholar
  37. 37.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, USA (1994)MATHGoogle Scholar
  38. 38.
    Kumar, S., Bentley, P. (eds.): On Growth. Elsevier Academic Press, Form and Computers (2003a)Google Scholar
  39. 39.
    Kumar, S., Bentley, P.J.: Biologically plausible evolutionary development. In: In Proceedings of ICES 03, the 5th International Conference on Evolvable Systems: From Biology to Hardware, pp. 57–68 (2003b)Google Scholar
  40. 40.
    Kuyucu, T.: Evolution of Circuits in Hardware and the Evolvability of Artificial Development. Ph.D. thesis, The University of York (2010)Google Scholar
  41. 41.
    Kuyucu, T., Trefzer, M., Miller, J.F., Tyrrell, A.M.: A scalable solution to n-bit parity via articial development. In: 5th International Conference on Ph.D. Research in Microelectronics & Electronics (2009)Google Scholar
  42. 42.
    Kuyucu, T., Trefzer, M.A., Miller, J.F., Tyrrell, A.M.: An investigation of the importance of mechanisms and parameters in a multicellular developmental system. IEEE Trans. Evolution. Comput. 15(3):313–345 (2011). doi: 10.1109/TEVC.2011.2132724
  43. 43.
    Lala, P.K.: Self-checking and Fault-Tolerant Digital Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)Google Scholar
  44. 44.
    Leyser, O., Day, S.: Mechanisms in Plant Development. Blackwell (2003)Google Scholar
  45. 45.
    Lindenmayer, A.: Mathematical models for cellular interactions in development. I. filaments with one-sided inputs. J. Theor. Biol. 280–299 (1968)Google Scholar
  46. 46.
    Liu, H., Miller, J.F., Tyrrell, A.M.: Intrinsic evolvable hardware implementation of a robust biological development model for digital systems. In: EH ’05: Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware, IEEE Computer Society, Washington, DC, USA, pp. 87–92 (2005). doi: 10.1109/EH.2005.32
  47. 47.
    Lopes, R.L., Costa, E.: Rencode: a regulatory network computational device. In: Genetic Programming: 14th European Conference, EuroGP, pp. 142–153 (2011)Google Scholar
  48. 48.
    Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: 7th European Conference on Artificial Life, Springer LNAI, pp. 256–265 (2003)Google Scholar
  49. 49.
    Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. Genetic and Evolutionary Computation GECCO, pp. 129–139. Springer, Berlin / Heidelberg (2004)Google Scholar
  50. 50.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Genetic Programming, Proceedings of EuroGP’2000, Springer, pp. 121–132 (2000)Google Scholar
  51. 51.
    Miller, J.F., Thomson, P.: (2003) A developmental method for growing graphs and circuits. In: Evolvable Systems: From Biology to Hardware, 5th International Conference, pp. 93–104Google Scholar
  52. 52.
    Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Hardware evolution at function level. In: PPSN IV: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature. Springer, London, UK, pp. 62–71 (1996)Google Scholar
  53. 53.
    Öztürkeri, C., Johnson, C.G.: Self-repair ability of evolved self-assembling systems in cellular automata. Genet. Prog. Evol. Mach. 15(3):313–341 (2014). doi: 10.1007/s10710-014-9216-2
  54. 54.
    Pearce, A.C., Senis, Y.A., Billadeau, D.D., Turner, M., Watson, S.P., Vigorito, E.: Vav1 and vav3 have critical but redundant roles in mediating platelet activation by collagen. Biol. Chem. 279(53):955–953, 962 (2004)Google Scholar
  55. 55.
    Reil, T.: Dynamics of gene expression in an artificial genome - implications for biological and artificial ontogeny. In: ECAL ’99: Proceedings of the 5th European Conference on Advances in Artificial Life, Springer, London, UK, pp. 457–466 (1999)Google Scholar
  56. 56.
    Roggen, D.: Multi-cellular Reconfigurable Circuits: Evolution Morphogenesis and Learning. Ph.D. thesis, EPFL. (2005)
  57. 57.
    Schramm, L., Jin, Y., Sendhoff, B.: Evolution and analysis of genetic networks for stable cellular growth and regeneration. Artific. Life 18(4):425–444 (2012)Google Scholar
  58. 58.
    Sims, K.: Evolving 3d morphology and behavior by competition. Artif. Life 1(4):353–372 (1994)Google Scholar
  59. 59.
    Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Gen. Prog. Evolv. Mach. 8(2):131–162 (2007). doi: 10.1007/s10710-007-9028-8
  60. 60.
    Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2):93–130 (2003). doi: 10.1162/106454603322221487
  61. 61.
    Steiner, T., Jin, Y., Sendhoff, B.: A cellular model for the evolutionary development of lightweight material with an inner structure. In: GECCO ’08: Proceedings of the 10th annual conference on Genetic and evolutionary computation, ACM, New York, NY, USA, pp. 851–858 (2008). doi: 10.1145/1389095.1389260
  62. 62.
    Tempesti, G., Mange, D., Petraglio, E., Stauffer, A., Thoma, Y.: Developmental processes in silicon: an engineering perspective. In: EH ’03: Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware, IEEE Computer Society, Washington, DC, USA, pp. 255–264 (2003)Google Scholar
  63. 63.
    Torresen, J.: A divide-and-conquer approach to evolvable hardware. In: ICES ’98: Proceedings of the Second International Conference on Evolvable Systems, Springer, London, UK, pp. 57–65 (1998)Google Scholar
  64. 64.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: A model for intrinsic artificial development featuring structural feedback and emergent growth. In: IEEE Congress on Evolutionary Computation (2009)Google Scholar
  65. 65.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrel, A.M.: Image compression of natural images using artificial gene regulatory networks. In: GECCO’10 (2010a)Google Scholar
  66. 66.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: Evolution and analysis of a robot controller based on a gene regulatory network. In: The 9th International Conference on Evolvable Systems: From Biology to Hardware (2010b)Google Scholar
  67. 67.
    Tufte, G.: The discrete dynamics of developmental systems. In: Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, pp. 2209–2216 (2009). doi: 10.1109/CEC.2009.4983215
  68. 68.
    Vassilev, V.K., Miller, J.F.: Scalability problems of digital circuit evolution: Evolvability and efficient designs. In: EH ’00: Proceedings of the 2nd NASA/DoD workshop on Evolvable Hardware, IEEE Computer Society, Washington, DC, USA, pp. 55–64 (2000)Google Scholar
  69. 69.
    Walker, J., Miller, J.: Evolution and acquisition of modules in cartesian genetic programming. EuroGp, Springer, Berlin, Heidelberg 3003, 187–197 (2004)Google Scholar
  70. 70.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL, USA (2002)MATHGoogle Scholar
  71. 71.
    Wolpert,, L., Beddington, R., Jessell, T.M., Lawrence, P., Meyerowitz, E.M., Smith, J.: Principles of Development. Oxford University Press (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tüze Kuyucu
    • 1
  • Martin A. Trefzer
    • 2
  • Andy M. Tyrrell
    • 2
  1. 1.Disruptive TechnologiesTrondheimNorway
  2. 2.Department of ElectronicsUniversity of YorkYorkUK

Personalised recommendations