Real Time Eye Blink Detection Method for Android Device Controlling

  • Suzan Anwar
  • Mariofanna Milanova
  • Daniah Al-Nadawi
Part of the Intelligent Systems Reference Library book series (ISRL, volume 136)


Designing systems to detect the human gestures and movements is an important area in computer vision. In this chapter, a method to detect human eye blink patterns is proposed. Our system detects the user’s eye blink patterns in real time and responds with an action on a mobile device, such as the phone call, text message, and/or an alarm. In this chapter, several image processing techniques are used for detecting human eye blinks. To examine the state of the eyelid, whether it’s opened or closed, the eye state value is used by computing the minimum threshold. The system is able to track the blinking of the eyes efficiently and accurately from the video using the proposed method. This system is user-friendly and easy to operate. The experiment was performed under different conditions by changing the distance from the camera and light in the room. The experimental results showed that the overall detection rate for eye blink is 98%. The proposed method takes only 8 ms as the average execution time for each frame, which makes it work more efficiently in real time applications.


Computer vision Face detection Eye detection Eye tracking Android mobile control Median blur filter Human computer interaction 


  1. 1.
    Le, H., Dang, T., Liu, F.: Eye Blink Detection for Smart Glasses. Washington State University, Vancouver, Portland State University (2000)Google Scholar
  2. 2.
    Drutarovsky, T., Fogelton, A.: Eye blink detection using variance of motion vectors. In: Agapito, L., Bronstein, M.M., Rother. C. (eds.) Computer Vision—ECCV 2014 Workshops, LNCS, vol. 8927, Part III, pp. 436–448Google Scholar
  3. 3.
    Pan, G., Sun, L., Wu, Z., Lao, S.: Eye blink-based anti-spoofing in face recognition from a generic web camera. In: IEEE 11th International Conference on Computer Vision (ICCV’2007), pp. 1–8 (2007)Google Scholar
  4. 4.
    Savio, N., Braiterman, J.: Design sketch: the context of mobile interaction. In: Proceedings of Mobile HCI, pp. 1–3 (2004)Google Scholar
  5. 5.
    Holland, C., Komogortsev, O.: Eye tracking on unmodified common tablets: challenges and solutions. In: Symposium on Eye Tracking Research and Applications (ETRA’2012), pp. 277–280 (2012)Google Scholar
  6. 6.
    Drewes, H.: Eye gaze tracking for human computer interaction. Dissertation an der LFE Medien-Informatik der Ludwig-Maximilians-Universität, München (2010)Google Scholar
  7. 7.
    Poole, A., Ball, L.J.: Eye tracking in human-computer interaction and usability research: current status and future prospects. In: Ghaoui, C. (ed.) Encyclopedia of Human-Computer Interaction, pp. 1–13. Idea Group Inc., Pennsylvania (2005)Google Scholar
  8. 8.
    Kowalik, M.: Do-it-yourself eye tracker: impact of the viewing angle on the eye track. In: 15th Central European seminar on Computer Graphics (CESCG’2011), pp. 1–7 (2011)Google Scholar
  9. 9.
    Wilson, P.I., Fernandez, J.: Facial feature detection using Haar classifiers. J. Comput. Sci. Coll. 21(4), 127–133 (2006)Google Scholar
  10. 10.
    Orman, Z., Abdulkadir, B., Kemer, D.: A study on face, eye detection and gaze estimation. Int. J. Comput. Sci. Eng. Surv. 2(3), 29–46 (2011)CrossRefGoogle Scholar
  11. 11.
    Developers: Android, the world’s most popular mobile platform. Accessed 29 June 2017
  12. 12.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: International Conference on Pattern Recognition (CVPR’2001), vol. 1, pp. 511–518 (2001)Google Scholar
  13. 13.
    Adolf, F.M.: How-to build a cascade of boosted classifiers based on Haar-like features. OpenCV’s Rapid Object Detection (2003)Google Scholar
  14. 14.
    Kaur, S., Singh, H.: Human eye detection using YCbCr color model, Harr-like features and template matching. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4(2), 825–832 (2015)Google Scholar
  15. 15.
    Anwar, S., Milanova, M., Bigazzi, A., Bocchi, L., Guazzini, A.: Real time intention recognition. In: 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON’2016) (2016). doi: 10.1109/IECON.2016.7794016
  16. 16.
    Kuo, P., Hannah, J.: An improved eye feature extraction algorithm based on de-formable templates. In: IEEE International Conference on Image Processing (ICIP’2005), pp. 1206–1209 (2005)Google Scholar
  17. 17.
    Kim, C., Turk, M.: Biased discriminant analysis using composite vectors for eye detection. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition (FG’2005), pp. 17–19 (2008)Google Scholar
  18. 18.
    Bulling, A., Duchowski, A., Paiva Majaranta, P.: The first international workshop on pervasive eye tracking and mobile eye based interaction. In: 13th International Conference on Ubiquitous Computing (2014). doi: 10.1145/2030112.2030248
  19. 19.
    Pal, M., Banerjee, A., Datta, S., Konar, A., Tibarewala, D.N., Janarthanan, R.: Electrooculography based blink detection to prevent computer vision syndrome. In: 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (IEEE CONECCT’2014), pp. 1–6 (2014)Google Scholar
  20. 20.
    Heishman, R., Duric, Z.: Using image flow to detect eye blinks in color videos. In: 8th IEEE Workshop on Applications of Computer Vision (WACV’2007), pp. 52–57 (2007)Google Scholar
  21. 21.
    Raees, A., Borole, J.N.: Drowsy driver identification using eye blink detection. Int. J. Comput. Sci. Inf. Technol. 6(1), 270–274 (2015)Google Scholar
  22. 22.
    Kim, Y.: Detection of eye blinking using Doppler sensor with principal component analysis. IEEE Antennas Wirel. Propag. Lett. 14, 123–126 (2015)CrossRefGoogle Scholar
  23. 23.
    Tamba, C., Tomii, S., Ohtsuki, T.: Blink detection using Doppler sensor. In: IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC’2014), pp. 2119–2124 (2014)Google Scholar
  24. 24.
    Yang, F., Yu, X., Huang, J., Yang, P., Metaxas, D.: Robust eyelid tracking for fatigue detection. In: 19th IEEE International Conference on Image Processing (ICIP’2012), pp. 1–4 (2012)Google Scholar
  25. 25.
    Xu, Y., Jiang, Y., Sun, Y.: Blink detection using 3D cross model. In: 5th International Symposium on Computational Intelligence and Design (ISCID’2012), vol. 2, pp. 115–1185 (2012)Google Scholar
  26. 26.
    Awais, M., Badruddin, N., Drieberg, M.: Automated eye blink detection and tracking using template matching. In: IEEE Student Conference on Research and Development (SCOReD’2013), pp 79–83 (2013)Google Scholar
  27. 27.
    Krolak, A., Strumillo, P.: Eye-blink detection system for human–computer interaction. J. Univers. Access Inf. Soc. 11(4), 409–419 (2012)CrossRefGoogle Scholar
  28. 28.
    Udayashankar, A., Kowshik, A.R., Chandramouli, S., Prashanth, H.S.: Assistance for the paralyzed using eye blink detection. In: 4th International Conference on Digital Home (ICDH’2012), pp. 104–108 (2012)Google Scholar
  29. 29.
    Pauly, L., Sankar, D.: A novel method for eye tracking and blink detection in video frames. In: IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS’2015), pp. 252–257 (2015)Google Scholar
  30. 30.
    Rahman, A., Sirshar, M., Khan, A.: Real time drowsiness detection using eye blink monitoring. In: National Software Engineering Conference (NSEC’2015), pp. 1–7 (2015)Google Scholar
  31. 31.
    Soukupova, T., Cech, J.: Real-time eye blink detection using facial landmarks. In: 21st Computer Vision Winter Workshop (CVWW’2016), pp. 1–8 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Suzan Anwar
    • 1
  • Mariofanna Milanova
    • 1
  • Daniah Al-Nadawi
    • 2
  1. 1.Department of Computer ScienceUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Department of BiologyUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations