Skip to main content

Convergence Strategy for Parallel Solving of Analytical Target Cascading with Augmented Lagrangian Coordination

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Included in the following conference series:

  • 4231 Accesses

Abstract

Analytical Target Cascading (ATC) is a decomposition-based optimization methodology that partitions a system into subsystems and then coordinates targets and responses among subsystems. Augmented Lagrangian relaxation with Alternating Direction method (AL-AD) has been widely used for the coordination process of both hierarchical ATC and non-hierarchical ATC, and theoretically guarantees convergence under the assumption that all subsystem problems are convex and continuous. One of the main advantages of ATC is that it can solve subsystem problems in parallel, thus allowing it to reduce computational cost by parallel computing. Previous studies have proposed AL coordination strategies for parallelization by eliminating interactions among subproblems. This is done by introducing a master problem and support variables or by approximating a quadratic penalty term to make subproblems separable. However, conventional AL-AD does not guarantee convergence in the case of parallel solving. Our study found that, in parallel solving using targets and responses of the current iteration, conventional AL-AD causes mismatch of information in updating the Lagrange multiplier (LM). Therefore, the LM may not reach the optimal point, and as a result, increasing penalty weight causes numerical difficulty in the AL penalty function approach. To solve this problem, we propose a modified AL-AD for parallel solving in non-hierarchical ATC. The proposed algorithm uses the subgradient method with adaptive step size in updating the LM, which is independent of quadratic penalty terms and keeps quadratic penalty terms at the initial value. Without approximation or introduction of an artificial master problem, the modified AL-AD for parallel solving can achieve similar accuracy and convergence with much less computational cost, compared with conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayrak, A.E., Kang, N., Papalambros, P.Y.: Decomposition-based design optimization of hybrid electric powertrain architectures: simultaneous configuration and sizing design. J. Mech. Des. 138(7), 071405 (2016)

    Article  Google Scholar 

  2. Bertsekas, D.P.: Nonlinear Programming, pp. 1–60. Athena scientific, Belmont (1999)

    MATH  Google Scholar 

  3. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods. Lecture notes of EE392o, Stanford University, Autumn Quarter, 2004 (2003)

    Google Scholar 

  4. DorMohammadi, S., Rais-Rohani, M.: Exponential penalty function formulation for multilevel optimization using the analytical target cascading framework. Struct. Multidiscip. Optim. 47(4), 599–612 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Han, J., Papalambros, P.Y.: A sequential linear programming coordination algorithm for analytical target cascading. J. Mech. Des. 132(2), 021003 (2010)

    Article  Google Scholar 

  6. Kang, N., Kokkolaras, M., Papalambros, P.Y.: Solving multiobjective optimization problems using quasi-separable MDO formulations and analytical target cascading. Struct. Multidiscip. Optim. 50(5), 849–859 (2014)

    Article  MathSciNet  Google Scholar 

  7. Kang, N., Kokkolaras, M., Papalambros, P.Y., Yoo, S., Na, W., Park, J., Featherman, D.: Optimal design of commercial vehicle systems using analytical target cascading. Struct. Multidiscip. Optim. 50(6), 1103–1114 (2014)

    Article  Google Scholar 

  8. Kim, H.M., Chen, W., Wiecek, M.M.: Lagrangian coordination for enhancing the convergence of analytical target cascading. AIAA J. 44(10), 2197–2207 (2006)

    Article  Google Scholar 

  9. Lassiter, J.B., Wiecek, M.M., Andrighetti, K.R.: Lagrangian coordination and analytical target cascading: solving ATC-decomposed problems with Lagrangian duality. Optim. Eng. 6(3), 361–381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, Y., Lu, Z., Michalek, J.J.: Diagonal quadratic approximation for parallelization of analytical target cascading. J. Mech. Des. 130(5), 051402 (2008)

    Article  Google Scholar 

  11. Michalek, J.J., Papalambros, P.Y.: An efficient weighting update method to achieve acceptable consistency deviation in analytical target cascading. In: ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 159–168. American Society of Mechanical Engineers (2004)

    Google Scholar 

  12. Michelena, N., Park, H., Papalambros, P.Y.: Convergence properties of analytical target cascading. AIAA J. 41(5), 897–905 (2003)

    Article  Google Scholar 

  13. Kim, H.M., Michelena, N., Papalambros, P.Y., Jiang, T.: Target cascading in optimal system design. J. Mech. Des. 125(3), 474–480 (2003)

    Article  Google Scholar 

  14. Kim, H.M., Rideout, D.G., Papalambros, P.Y., Stein, J.L.: Analytical target cascading in automotive vehicle design. J. Mech. Des. 125, 481–489 (2003)

    Article  Google Scholar 

  15. Shin, J., Lee, I.: Reliability-based vehicle safety assessment and design optimization of roadway radius and speed limit in windy environments. J. Mech. Des. 136(8), 081006 (2014)

    Article  Google Scholar 

  16. Shin, J., Lee, I.: Reliability analysis and reliability-based design optimization of roadway horizontal curves using a first-order reliability method. Eng. Optim. 47(5), 622–641 (2015)

    Article  Google Scholar 

  17. Tosserams, S., Etman, L.F.P., Rooda, J.E.: Augmented Lagrangian coordination for distributed optimal design in MDO. Int. J. Numer. Meth. Eng. 73(13), 1885–1910 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tosserams, S., Etman, L.F.P., Rooda, J.E.: Performance evaluation of augmented Lagrangian coordination for distributed multidisciplinary design optimization. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference, p. 1805 (2008)

    Google Scholar 

  19. Tosserams, S., Etman, L.F.P., Papalambros, P.Y., Rooda, J.E.: An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct. Multidiscip. Optim. 31(3), 176–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tosserams, S., Etman, L.F., Rooda, J.E.: A classification of methods for distributed system optimization based on formulation structure. Struct. Multidiscip. Optim. 39(5), 503–517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tosserams, S., Etman, L.F., Rooda, J.E.: Block-separable linking constraints in augmented Lagrangian coordination. Struct. Multidiscip. Optim. 37(5), 521–527 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tosserams, S., Etman, L.P., Rooda, J.E.: An augmented Lagrangian decomposition method for quasi-separable problems in MDO. Struct. Multidiscip. Optim. 34(3), 211–227 (2007)

    Article  MATH  Google Scholar 

  23. Tosserams, S., Kokkolaras, M., Etman, L.F.P., Rooda, J.E.: A nonhierarchical formulation of analytical target cascading. J. Mech. Des. 132(5), 051002 (2010)

    Article  Google Scholar 

  24. Wang, W., Blouin, V.Y., Gardenghi, M.K., Fadel, G.M., Wiecek, M.M., Sloop, B.C.: Cutting plane methods for analytical target cascading with augmented Lagrangian coordination. J. Mech. Des. 135(10), 104502 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namwoo Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, Y., Kang, N., Lee, I. (2018). Convergence Strategy for Parallel Solving of Analytical Target Cascading with Augmented Lagrangian Coordination. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics