Skip to main content

How to Deal with Mixed-Variable Optimization Problems: An Overview of Algorithms and Formulations

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Abstract

Real world engineering optimization problems often involve discrete variables (e.g., categorical variables) characterizing choices such as the type of material to be used or the presence of certain system components. From an analytical perspective, these particular variables determine the definition of the objective and constraint functions, as well as the number and type of parameters that characterize the problem. Furthermore, due to the inherent discrete and potentially non-numerical nature of these variables, the concept of metrics is usually not definable within their domain, thus resulting in an unordered set of possible choices. Most modern optimization algorithms were developed with the purpose of solving design problems essentially characterized by integer and continuous variables and by consequence the introduction of these discrete variables raises a number of new challenges. For instance, in case an order can not be defined within the variables domain, it is unfeasible to use optimization algorithms relying on measures of distances, such as Particle Swarm Optimization. Furthermore, their presence results in non-differentiable objective and constraint functions, thus limiting the use of gradient-based optimization techniques. Finally, as previously mentioned, the search space of the problem and the definition of the objective and constraint functions vary dynamically during the optimization process as a function of the discrete variables values.

This paper presents a comprehensive survey of the scientific work on the optimization of mixed-variable problems characterized by continuous and discrete variables. The strengths and limitations of the presented methodologies are analyzed and their adequacy for mixed-variable problems with regards to the particular needs of complex system design is discussed, allowing to identify several ways of improvements to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelkhalik, O.: Autonomous planning of multigravity-assist trajectories with deep space Maneuvers using a differential evolution approach. Int. J. Aerosp. Eng. 2013, 1–11 (2013)

    Article  Google Scholar 

  2. Abdelkhalik, O.: Hidden genes genetic optimization for variable-size design space problems. J. Optim. Theor. Appl. 156(2), 450–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramson, M.A.: Mixed variable optimization of a load-bearing thermal insulation system using a filter pattern search algorithm. Optim. Eng. 5(2), 157–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abramson, M.A., Audet, C., Chrissis, J.W., Walston, J.G.: Mesh adaptive direct search algorithms for mixed variable optimization. Optim. Lett. 3(1), 35–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abramson, M.A., Audet, C., Dennis Jr., J.E.: Filter pattern search algorithms for mixed variable constrained optimization problems. Pac. J. Optim. 3(3), 477–500 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Audet, C., Dennis Jr., J.E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11(3), 573–594 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

    Article  Google Scholar 

  9. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Meth. Appl. Mech. Eng. 191(11–12), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)

    Google Scholar 

  12. Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Evolutionary Design and Manufacture, pp. 55–67. Springer, London (2000)

    Google Scholar 

  13. Coelho, R.F.: Metamodels for mixed variables based on moving least squares. Optim. Eng. 15(2), 311–329 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank, C., Marlier, R., Pinon-Fischer, O.J., Mavris, D.N.: An evolutionary multi-architecture multi-objective optimization algorithm for design space exploration. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston, Virginia, January 2016. American Institute of Aeronautics and Astronautics

    Google Scholar 

  15. Goldberg, D.E.: Genetic Algorithms in Search Optimization & Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    Google Scholar 

  16. Herrera, M., Guglielmetti, A., Xiao, M., Coelho, R.F.: Metamodel-assisted optimization based on multiple Kernel regression for mixed variables. Struct. Multi. Optim. 49(6), 979–991 (2014)

    Article  Google Scholar 

  17. Hooke, R., Jeeves, T.A.: Direct search solution of numerical, statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  MATH  Google Scholar 

  18. Isebor, O.J.: Derivative-free optimization for generalized oil field development. Ph.D. thesis, Stanford University, USA (2010)

    Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  20. Kirkpatrick, S., Gelatt, D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kokkolaras, M., Audet, C., Dennis Jr., J.E.: Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optim. Eng. 2(1), 5–29 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems. In: 50 Years of Integer Programming 1958–2008, pp. 105–132. Springer, Heidelberg (2010)

    Google Scholar 

  23. Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, T., Dijkstra, J., Reiber, J.H.C.: Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis. In: 2008 IEEE Congress on Evolutionary Computation, CEC 2008, Hong Kong, June 2008. IEEE, pp. 2764–2771

    Google Scholar 

  24. Liao, C.-J., Tseng, C.-T., Luarn, P.: A discrete version of particle swarm optimization for flowshop scheduling problems. Comput. Oper. Res. 34(10), 3099–3111 (2007)

    Article  MATH  Google Scholar 

  25. Liao, T., Socha, K., de Oca, M.A.M., Stutzle, T., Dorigo, M.: Ant colony optimization for mixed-variable optimization problems. IEEE Trans. Evol. Comput. 18(4), 503–518 (2014)

    Article  Google Scholar 

  26. Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable programming. SIAM J. Optim. 15(4), 1057–1084 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nyew, H.M., Abdelkhalik, O., Onder, N.: Structured-chromosome evolutionary algorithms for variable-size autonomous interplanetary trajectory planning optimization. J. Aerosp. Inf. Syst. 12(3), 314–328 (2015)

    Google Scholar 

  29. Roy, S., Moore, K., Hwang, J.T., Gray, J.S., Crossley, W.A., Martins, J.: A mixed integer efficient global optimization algorithm for the simultaneous aircraft allocation-mission-design problem. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston, Virginia, January 2017. American Institute of Aeronautics and Astronautics

    Google Scholar 

  30. Stelmack, M., Nakashima, N., Batill, S.: Genetic algorithms for mixed discrete/continuous optimization in multidisciplinary design. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Reston, Virigina, September 1998. American Institute of Aeronautics and Astronautics

    Google Scholar 

  31. Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, C., Zeng, J., Pan, J.-S.: A modified particle swarm optimization with feasibility-based rules for mixed-variable optimization problems. Int, J. Innov. Comput. Inf. Contr. 7(6), 3081–3096 (2011)

    Google Scholar 

  33. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  34. Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Struct. Multi. Optim. 26(1–2), 121–131 (2004)

    Article  Google Scholar 

  35. Wang, J., Yin, Z.: A ranking selection-based particle swarm optimizer for engineering design optimization problems. Struct. Multi. Optim. 37(2), 131–147 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Pelamatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pelamatti, J., Brevault, L., Balesdent, M., Talbi, EG., Guerin, Y. (2018). How to Deal with Mixed-Variable Optimization Problems: An Overview of Algorithms and Formulations. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics