Skip to main content

Producing Smart Pareto Sets for Multi-objective Topology Optimisation Problems

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Included in the following conference series:

  • 6506 Accesses

Abstract

To date the design of structures via topology optimisation methods has mainly focused on single-objective problems. However, real-world design problems usually involve several different objectives, most of which counteract each other. Therefore, designers typically seek a set of Pareto optimal solutions, a solution for which no other solution is better in all objectives, which capture the trade-off between these objectives. This set is known as a smart Pareto set. Currently, only the weighted sums method has been used for generating Pareto fronts with topology optimisation methods. However, the weighted sums method is unable to produce evenly distributed smart Pareto sets. Furthermore, evenly distributed weights have been shown to not produce evenly spaced solutions. Therefore, the weighted sums method is not suitable for generating smart Pareto sets. Recently, the smart normal constraints method has been shown to be capable of directly generating smart Pareto sets. This work presents an updated smart normal constraint method, which is combined with a bi-directional evolutionary structural optimisation algorithm for multi-objective topology optimisation. The smart normal constraints method has been modified by further restricting the feasible design space for each optimisation run such that dominant and redundant points are not found. The algorithm is tested on several different structural optimisation problems. A number of different structural objectives are analysed, namely compliance, dynamic and buckling objectives. Therefore, the method is shown to be capable of solving various types of multi-objective structural optimisation problems. The goal of this work is to show that smart Pareto sets can be produced for complex topology optimisation problems. Furthermore, this research hopes to highlight the gap in the literature of topology optimisation for multi-objective problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pareto, V.: Cour Deconomie Politique. Librarie Droz-Geneve, Geneva (1964)

    Book  Google Scholar 

  2. Michell, A.G.M.: The limits of economy of material in frame structures. Philos. Mag. 8, 589–597 (1904)

    Article  MATH  Google Scholar 

  3. Prager, W.: A note on discretized Michell structures. Comput. Methods Appl. Mech. Eng. 3(3), 349–355 (1974)

    Article  MATH  Google Scholar 

  4. Svanberg, K.: Optimization of geometry in truss design. Comput. Methods Appl. Mech. Eng. 28(1), 63–80 (1981)

    Article  MATH  Google Scholar 

  5. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  6. Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  7. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)

    Article  Google Scholar 

  9. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  10. Prager, W., Rozvany, G.I.N.: Optimization of the structural geometry. In: Bednarek, A., Cesari, L. (eds.) Dynnamical Systems, pp. 265–293. Academic Press, New York (1977)

    Chapter  Google Scholar 

  11. Rozvany, G.I.N., Zhou, M., Birker, T.: Generalized shape optimization without homogenization. Struct. Optim. 4, 250–254 (1992)

    Article  Google Scholar 

  12. Yang, X.Y., Xie, Y.M., Steven, G.P., Querin, O.M.: Bidirectional evolutionary method for stiffness optimization. AIAA J. 37, 1483–1488 (1999)

    Article  Google Scholar 

  13. Munk, D.J., Vio, G.A., Steven, G.P.: Topology and shape optimization methods using evolutionary algorithms: a review. Struct. Multidiscip. Optim. 52(3), 613–631 (2015)

    Article  MathSciNet  Google Scholar 

  14. Rozvany, G.I.N.: A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 37, 217–237 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Munk, D.J., Kipouros, T., Vio, G.A., Parks, G.T., Steven, G.P.: Multiobjective and multi-physics topology optimization using an updated smart normal constraints bi-directional evolutionary structural optimization method. Struct. Multidiscip. Optim. (2017, in press)

    Google Scholar 

  16. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8(1), 59–60 (1963)

    Article  Google Scholar 

  17. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man. Cybern. 1(3), 296–297 (1971)

    MathSciNet  MATH  Google Scholar 

  18. Marler, R.T., Arora, J.S.: The weighted sum method for multiobjective optimization: new insights. Struct. Multidiscip. Optim. 41(6), 853–862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 (1997)

    Article  Google Scholar 

  20. Messac, A., Sundararaj, G.J., Tappeta, R.V., Renaud, J.E.: Ability of objective functions to generate points on non-convex Pareto frontiers. AIAA J. 38, 1084–1091 (2000)

    Article  Google Scholar 

  21. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint method for generating the Pareto frontier. Struct. Multidiscip. Optim. 25, 86–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  23. Zhao, S.Z., Suganthan, P.: Two-lbests based multi-objective particle swarm optimizer. Eng. Optim. 43(1), 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wang, S., Tai, K., Wang, M.Y.: An enhanced genetic algorithm for structural topology optimization. Int. J. Numer. Methods Eng. 65(1), 18–44 (2006)

    Article  MATH  Google Scholar 

  25. Madeira, J.A., Rodrigues, H., Pina, H.: Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing. Struct. Multidiscip. Optim. 32(1), 31–39 (2006)

    Article  Google Scholar 

  26. Wildman, R.A., Gazonas, G.A.: Multiobjective topology optimization of energy absorbing materials. Struct. Multidiscip. Optim. 51(1), 125–143 (2015)

    Article  MathSciNet  Google Scholar 

  27. Sigmund, O., Maute, K.: Topology optimization approaches: a comparative review. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  28. Zavala, G.R., Nebro, A.J., Luna, F., Coello, C.A.C.: A survey of multi-objective metaheuristics applied to structural optimization. Struct. Multidiscip. Optim. 49(4), 537–558 (2014)

    Article  MathSciNet  Google Scholar 

  29. Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54(4), 331–390 (2001)

    Article  Google Scholar 

  30. Tai, K., Prasad, J.: Target-matching test problem for multiobjective topology optimization using genetic algorithms. Struct. Multidiscip. Optim. 34(4), 333–345 (2007)

    Article  Google Scholar 

  31. Cardillo, A., Cascini, G., Frillici, F.S., Rotini, F.: Multi-objective topology optimization through GA-based hybridization of partial solutions. Eng. Comput. 29(3), 287–306 (2013)

    Article  Google Scholar 

  32. Sigmund, O.: Design of multiphysics actuators using topology optimization - part I: one-material structures. Comput. Method Appl. Mech. Eng. 190, 6577–6604 (2001)

    Article  MATH  Google Scholar 

  33. Steven, G.P., Li, Q., Xie, Y.M.: Evolutionary topology and shape design for general physical field problems. Comput. Mech. 26(2), 129–139 (2000)

    Article  MATH  Google Scholar 

  34. Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  35. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  36. Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures. Wiley, Chichester (2010)

    Book  MATH  Google Scholar 

  37. Rozvany, G.I.N., Lewinski, T.: Topology Optimization in Structural and Continuum Mechanics. Springer, Vienna (2013)

    MATH  Google Scholar 

  38. Proos, K.A., Steven, G.P., Querin, O.M., Xie, Y.M.: Multicriterion evolutionary structural optimization using the weighting and the global criterion methods. AIAA J. 39(10), 2006–2012 (2001)

    Article  Google Scholar 

  39. Proos, K.A., Steven, G.P., Querin, O.M., Xie, Y.M.: Stiffness and inertia multicriteria evolutionary structural optimization. Eng. Comput. 18, 1031–1054 (2001)

    Article  MATH  Google Scholar 

  40. Kim, W.Y., Grandhi, R.V., Haney, M.: Multiobjective evolutionary structural optimization using combined static/dynamic control parameters. AIAA J. 44, 794–802 (2006)

    Article  Google Scholar 

  41. Izui, K., Yamada, T., Nishiwaki, S., Tanaka, K.: Multiobjective optimization using an aggregative gradient-based method. Struct. Multidiscip. Optim. 51(1), 173–182 (2015)

    Article  Google Scholar 

  42. Sato, Y., Izui, K., Yamada, T., Nishiwaki, S.: Gradient-based multiobjective optimization using a discrete constraint technique and point replacement. Eng. Optim. 48(7), 1226–1250 (2015)

    Article  Google Scholar 

  43. Sato, Y., Izui, K., Yamada, T., Nishiwaki, S.: Pareto frontier exploration in multiobjective topology optimization using adaptive weighting and point selection schemes. Struct. Multidisc. Optim. 55, 409–422 (2017)

    Article  MathSciNet  Google Scholar 

  44. Messac, A., Mattson, C.A.: Normal constraints method with guarantee of even representation of complete Pareto frontier. AIAA J. 42, 2101–2111 (2004)

    Article  Google Scholar 

  45. Mattson, C.A., Mullur, A.A., Messac, A.: Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Eng. Optim. 36, 721–740 (2004)

    Article  MathSciNet  Google Scholar 

  46. Rynne, B.: Linear Functional Analysis. Springer, New York (2007)

    Google Scholar 

  47. Hancock, B.J., Mattson, C.A.: The smart normal constraints method for directly generating a smart Pareto set. Struct. Multidiscip. Optim. 48, 763–775 (2013)

    Article  Google Scholar 

  48. Zuo, Z., Xie, Y.M., Huang, X.: Evolutionary topology optimization of structures with multiple displacements and frequency constraints. Adv. Struct. Eng. 15, 385–398 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Munk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munk, D.J., Vio, G.A., Steven, G.P., Kipouros, T. (2018). Producing Smart Pareto Sets for Multi-objective Topology Optimisation Problems. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics