Skip to main content

Finding Teams in Graphs and Its Application to Spatial Gene Cluster Discovery

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10562))

Included in the following conference series:

  • 896 Accesses

Abstract

Gene clusters are sets of genes in a genome with associated functionality. Often, they exhibit close proximity to each other on the chromosome which can be beneficial for their common regulation. A popular strategy for finding gene clusters is to exploit the close proximity by identifying sets of genes that are consistently close to each other on their respective chromosomal sequences across several related species.

Yet, even more than gene proximity on linear DNA sequences, the spatial conformation of chromosomes may provide a pivotal indicator for common regulation and/or associated function of sets of genes.

We present the first gene cluster model capable of handling spatial data. Our model extends a popular computational model for gene cluster prediction, called \(\delta \) -teams, from sequences to general graphs. In doing so, \(\delta \)-teams are single-linkage clusters of a set of shared vertices between two or more undirected weighted graphs such that the largest link in the cluster does not exceed a given threshold \(\delta \) in any input graph.

We apply our model to human and mouse data to find spatial gene clusters, i.e., gene sets with functional associations that exhibit close neighborhood in the spatial conformation of the chromosome across species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  2. Beal, M., Bergeron, A., Corteel, S., Raffinot, M.: An algorithmic view of gene teams. Theoret. Comput. Sci. 320(2–3), 395–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belton, J.M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., Dekker, J.: Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3), 268–276 (2012)

    Article  Google Scholar 

  4. Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., Shendure, J.: Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31(12), 1119–1125 (2013)

    Article  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  6. Díaz-Díaz, N., Aguilar-Ruiz, J.S.: Go-based functional dissimilarity of gene sets. BMC Bioinform. 12(1), 360 (2011)

    Article  Google Scholar 

  7. Didier, G., Schmidt, T., Stoye, J., Tsur, D.: Character sets of strings. J. Discret. Algorithms 5(2), 330–340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren, B.: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398), 376–380 (2012)

    Article  Google Scholar 

  9. He, X., Goldwasser, M.H.: Identifying conserved gene clusters in the presence of homology families. J. Comput. Biol. 12(6), 638–656 (2005)

    Article  Google Scholar 

  10. Jacob, F., Perrin, D., Sanchez, C., Monod, J.: Operon: a group of genes with the expression coordinated by an operator. C. R. Hebd. Seances Acad. Sci. 250, 1727–1729 (1960)

    Google Scholar 

  11. Jahn, K.: Efficient computation of approximate gene clusters based on reference occurrences. J. Comput. Biol. 18(9), 1255–1274 (2011)

    Article  MathSciNet  Google Scholar 

  12. Larroux, C., Fahey, B., Degnan, S.M., Adamski, M., Rokhsar, D.S., Degnan, B.M.: The NK homeobox gene cluster predates the origin of Hox genes. Curr. Biol. 17(8), 706–710 (2007)

    Article  Google Scholar 

  13. Ryba, T., Hiratani, I., Lu, J., Itoh, M., Kulik, M., Zhang, J., Schulz, T.C., Robins, A.J., Dalton, S., Gilbert, D.M.: Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20(6), 761–770 (2010)

    Article  Google Scholar 

  14. Schmidt, T., Stoye, J.: Gecko and GhostFam: rigorous and efficient gene cluster detection in prokaryotic genomes. Methods Mol. Biol. 396, 165–182 (2007). (Chapter 12)

    Article  Google Scholar 

  15. Selvaraj, S., Dixon, J.R., Bansal, V., Ren, B.: Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31(12), 1111–1118 (2013)

    Article  Google Scholar 

  16. Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., Cavalli, G.: Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3), 458–472 (2012)

    Article  Google Scholar 

  17. Thévenin, A., Ein-Dor, L., Ozery-Flato, M., Shamir, R.: Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucleic Acids Res. 42(15), 9854–9861 (2014)

    Article  Google Scholar 

  18. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, B.F., Kuo, C.C., Liu, S.J., Lin, C.H.: A new efficient algorithm for the gene-team problem on general sequences. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(2), 330–344 (2012)

    Article  Google Scholar 

  20. Wang, B.F., Lin, C.H.: Improved algorithms for finding gene teams and constructing gene team trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1258–1272 (2010)

    Article  Google Scholar 

  21. Wang, B.F., Lin, C.H., Yang, I.T.: Constructing a gene team tree in almost O(n lg n) time. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(1), 142–153 (2014)

    Article  Google Scholar 

  22. Winter, S., Jahn, K., Wehner, S., Kuchenbecker, L., Marz, M., Stoye, J., Böcker, S.: Finding approximate gene clusters with Gecko 3. Nucleic Acids Res. 44(20), 9600–9610 (2016)

    Google Scholar 

  23. Yates, A., Akanni, W., Amode, M.R., Barrell, D., Billis, K., Carvalho-Silva, D., Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., Girn, C.G., Gordon, L., Hourlier, T., Hunt, S.E., Janacek, S.H., Johnson, N., Juettemann, T., Keenan, S., Lavidas, I., Martin, F.J., Maurel, T., McLaren, W., Murphy, D.N., Nag, R., Nuhn, M., Parker, A., Patricio, M., Pignatelli, M., Rahtz, M., Riat, H.S., Sheppard, D., Taylor, K., Thormann, A., Vullo, A., Wilder, S.P., Zadissa, A., Birney, E., Harrow, J., Muffato, M., Perry, E., Ruffier, M., Spudich, G., Trevanion, S.J., Cunningham, F., Aken, B.L., Zerbino, D.R., Flicek, P.: Ensembl 2016. Nucleic Acids Res. 44(D1), D710 (2016)

    Article  Google Scholar 

  24. Zhang, M., Leong, H.W.: Gene team tree - a hierarchical representation of gene teams for all gap lengths. J. Comput. Biol. 16(10), 1383–1398 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to Krister Swenson for kindly providing the Hi-C data used in this study and for his many valuable suggestions. We wish to thank Pedro Feijão for many fruitful discussions in the beginning of this project. This work was partially supported by DFG GRK 1906/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Doerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schulz, T., Stoye, J., Doerr, D. (2017). Finding Teams in Graphs and Its Application to Spatial Gene Cluster Discovery. In: Meidanis, J., Nakhleh, L. (eds) Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science(), vol 10562. Springer, Cham. https://doi.org/10.1007/978-3-319-67979-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67979-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67978-5

  • Online ISBN: 978-3-319-67979-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics