Computer-Aided Physical Simulations Within the Context of New Technology Development

  • Marcin HojnyEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 47)


A new category has appeared in the experimental research for evaluation of material properties. It is called “physical simulation” and is directly related to a new type of computer controlled testing machine, able to change experiment conditions automatically during the experiment progress according to the assumed programme. It allows the course of industrial processes to be reconstructed in laboratory conditions, and, more precisely, the dynamics of changes in the tested material properties to be reconstructed as in the actual industrial process. So, the laboratory test results may be applied directly for commercial purposes.


  1. 1.
    Hojny M (2014) Projektowanie dedykowanych systemów symulacji odkształcania stali w stanie półciekłym. Wzorek, KrakowGoogle Scholar
  2. 2.
    Glowacki M, Hojny M, Kuziak R (2012) Computer aided investigation of mechanical properties of semi-solid steels. AGH, KrakowGoogle Scholar
  3. 3.
    Project report (AGH Krakow-IMZ Gliwice) (2010) Number: B0–1277 (not published)Google Scholar
  4. 4.
    Project report (AGH Krakow-IMZ Gliwice) (2010) Number: B0–1299 (not published)Google Scholar
  5. 5.
    Project report (AGH Krakow-IMZ Gliwice) (2008) Number: B0–2008/55 (not published)Google Scholar
  6. 6.
    Project report (AGH Krakow-IMZ Gliwice) (2010) Number: B0–1124 (not published)Google Scholar
  7. 7. Access 2 Aug 2017
  8. 8.
    Hojny M, Glowacki M (2008) Computer modelling of deformation of steel samples with mushy zone. Steel Res Int 79:868–874CrossRefGoogle Scholar
  9. 9.
    Hojny M, Glowacki M (2009) The physical and computer modelling of plastic deformation of low carbon steel in semi-solid state. J Eng Mater Technol 131:041003–1–041003-7CrossRefGoogle Scholar
  10. 10.
    Hojny M, Glowacki M (2011) Modeling of strain-stress relationship for carbon steel defor-med at temperature exceeding hot rolling range. J Eng Mater Technol 133:021008–1–021008-7CrossRefGoogle Scholar
  11. 11.
    Schwerdtfeger K (1972) Einfluß der Erstarrungsgeschwindigkeit und des Schwefelgehaltes suf die durchschnittliche Größe von Mangansulfideinschlüssen in einem Mangan und Kohlenstoff enthaltendem Stahl. Archiv für das Eisen-hüttenwesen 43:201–203CrossRefGoogle Scholar
  12. 12.
    Kurtz W, Fisher DJ (1981) Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall 29:11–20CrossRefGoogle Scholar
  13. 13.
    Lin CJ, Sekhar JA (1994) Solidification morphology and semi-solid deformation in superalloy Rene 108. J Mat Sci 29:5005–5013CrossRefGoogle Scholar
  14. 14.
    Shiang LT, Wray PJ (1989) The microstructures of strip-cast low-carbon steels and their response to thermal processing. Metall Trans 20:1191–1198CrossRefGoogle Scholar
  15. 15.
    El-Wazari AM (1999) The effect of thermal history on the hot ductility of microalloyed steels. ISIJ Int 39:253–262CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and ModellingAGH University of Science and TechnologyKrakówPoland

Personalised recommendations