Spatial Solutions Based on the Finite Element Method and the Monte Carlo Method—A Multi-scale Approach

  • Marcin HojnyEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 47)


This chapter presents a 3D solution to the problem of medium deformation in conditions of its simultaneous solidification. The proposed solution consists of four sub-models. These are a mechanical model based upon a rigid-plastic solution, and a thermal model based on the Fourier equation solution. Another key component model is the model of function of stress versus strain change. The developed methodologies of determining the mentioned functions are presented in details in Chap.  8.


  1. 1.
    Malinowski Z (2005) Numeryczne modele w przeróbce plastycznej i wymianie ciepła. AGH, Krakow, PolandGoogle Scholar
  2. 2.
    Hadala B, Cebo-Rudnicka A, Malinowski Z et al (2011) The influence of thermal stresses and strand bending on surface defects formation in continuously cast strands. Arch Metall Mater 56:367–377CrossRefGoogle Scholar
  3. 3.
    Malinowski Z, Rywotycki M (2009) Modelling of the strand and mold temperature in the continuous steel caster. Arch Civ Mech Eng 9:59–73CrossRefGoogle Scholar
  4. 4.
    Milkowska-Piszczek K, Rywotycki M, Falkus J et al (2015) A comparison of models describing heat transfer in the primary cooling zone of a continuous casting machine. Arch Metall Mater 60:239–244Google Scholar
  5. 5.
    Glowacki M (1998) Termomechaniczno-mikrostrukturalny model walcowania w wykrojach kształtowych. AGH, Krakow, PolandGoogle Scholar
  6. 6.
    Glowacki M (2012) Modelowanie matematyczne i symulacja odkształcania metali. AGH, Krakow, PolandGoogle Scholar
  7. 7.
    Glowacki M, Hojny M, Kuziak R (2012) Computer aided investigation of mechanical properties of semi-solid steels. AGH, Krakow, PolandGoogle Scholar
  8. 8.
    Hojny M (2014) Projektowanie dedykowanych systemów symulacji odkształcania stali w stanie półciekłym. Wzorek, Krakow, PolandGoogle Scholar
  9. 9.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier Butterworth-Heinemann, Oxford, UKzbMATHGoogle Scholar
  10. 10.
    Szczygiol N (1997) Równania krzepnięcia w ujęciu metody elementów skończonych. Solidif Met Alloy 30:221–232Google Scholar
  11. 11.
    Lewis RW, Roberts PM (1987) Finite element simulation of solidification problems. Appl Sci Res 44:61–92CrossRefzbMATHGoogle Scholar
  12. 12.
    Voller VR, Swaminathan CR, Thomas BG (1990) Fixed grid techniques for phase change problems: a review. Int J Numer Methods Eng 30:875–898CrossRefzbMATHGoogle Scholar
  13. 13.
    Pietrzyk M (1992) Metody numeryczne w przerobce plastycznej metali. AGH, KrakowGoogle Scholar
  14. 14.
    Madej L (2010) Development of the modelling strategy for the strain localization simulation based on the digital material representation. AGH, KrakowGoogle Scholar
  15. 15.
    Mordechai S (ed) (2011) Application of monte carlo method in science and engineering. InTech, RijekaGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and ModellingAGH University of Science and TechnologyKrakówPoland

Personalised recommendations