Integration of Physical and Computer Simulation

  • Marcin HojnyEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 47)


This chapter presents main assumptions and component modules of a concept integrating physical and computer simulation areas. The proposed approach utilizes capabilities of modern thermo-mechanical simulators of Gleeble 3800 series in the modelling of high-temperature steel deformation processes, as well as in the modelling of integrated casting and rolling processes of flat strands with a solidifying core. Other components, which are necessary, are mathematical models including a hybrid-analytical model of steel deformation in the condition of the liquid and solid phase coexistence for the axially symmetrical state, which constitutes the main foundation of the developed modelling concept, and mathematical models in the form of 3D solutions based on finite element, smoothed particle hydrodynamics and Monte Carlo method.


  1. 1.
    Glowacki M, Hojny M, Kuziak R (2012) Computer aided investigation of mechanical properties of semi-solid steels. AGH, KrakowGoogle Scholar
  2. 2.
    Hojny M (2014) Projektowanie dedykowanych systemów symulacji odkształcania stali w stanie półciekłym. Wzorek, KrakowGoogle Scholar
  3. 3.
    Hojny M (2011) Final report of project N N508 410637: Komputerowe wspomaganie metodologii określania zależności odkształcenie-naprężenie dla odkształcanych pasm stalowych z krzepnącym rdzeniem (not published)Google Scholar
  4. 4.
    Liberda L (2011) Internetowy system zarządzania wynikami eksperymentalnymi. M.Sc. thesis, AGH, KrakowGoogle Scholar
  5. 5.
    Mrowiec K (2009) Wykorzystanie języka X3D do zamodelowania wirtualnego symulatora termo-mechanicznego Gleeble 3800. M.Sc. thesis, AGH, KrakowGoogle Scholar
  6. 6.
    Hojny M, Głowacki M (2011) Development of a FEM system for high temperature steel deformation testing procedure. A series of handbooks on theory and engineering applications of computational methods. CIMNE, BarcelonaGoogle Scholar
  7. 7.
    Chakrabarty J (2006) Theory of plasticity. Elsevier Butterworth-Heinemann, OxfordzbMATHGoogle Scholar
  8. 8.
    Bower AF (2010) Applied mechanics and solids. Taylor & Francis Group, New YorkGoogle Scholar
  9. 9.
    Adhikari SK (1998) Variational principles for the numerical solution of scattering problems. Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Findaeisen W, Szymanowski J, Wierzbicki A (1980) Theory and optimization methods. PWN, WarszawaGoogle Scholar
  11. 11.
    Nocedal J, Wright SJ (2006) Numerical optimization. Springer, BerlinzbMATHGoogle Scholar
  12. 12.
    Evans LC (1998) Partial differential equations. Am Math Soc 37:363–367Google Scholar
  13. 13.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier Butterworth-Heinemann, OxfordzbMATHGoogle Scholar
  14. 14.
    Glowacki M (2012) Modelowanie matematyczne i symulacja odkształcania metali. AGH, KrakowGoogle Scholar
  15. 15.
    Malinowski Z (2005) Numeryczne modele w przeróbce plastycznej i wymianie ciepła. AGH, KrakowGoogle Scholar
  16. 16.
    Malinowski Z (1986) Analysis of upsetting process based on velocity fields. Ph.D. thesis, AGH, KrakowGoogle Scholar
  17. 17.
    Hojny M, Glowacki M (2008) Computer modelling of deformation of steel samples with mushy zone. Steel Res Int 79:868–874CrossRefGoogle Scholar
  18. 18.
    Hojny M, Glowacki M (2009) The physical and computer modeling of plastic deformation of low carbon steel in semi-solid state. J Eng Mater Technol 131:041003-1–041003-7CrossRefGoogle Scholar
  19. 19.
    Hojny M, Glowacki M (2011) Modeling of strain-stress relationship for carbon steel deformed at temperature exceeding hot rolling range. J Eng Mater Technol 133:021008-1–021008-7CrossRefGoogle Scholar
  20. 20. Accessed 2 Aug 2017
  21. 21. Accessed 2 Aug 2017
  22. 22. Accessed 2 Aug 2017

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and ModellingAGH University of Science and TechnologyKrakówPoland

Personalised recommendations