Advertisement

State of the Art

  • Marcin HojnyEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 47)

Abstract

Contemporary engineering sciences are strictly related to the broad application of computer technologies and methods. The finite difference method (FDM), the boundary element method (BEM) and the finite element method (FEM) are the most popular computational methods. The FEM is certainly the most widely used, which is proven by the numerous computing systems based on this method that are applied in engineering practice.

References

  1. 1.
    Glowacki M (2005) The mathematical modelling of thermo-mechanical processing of steel during multi-pass shape rolling. J Mat Proc Tech 168:336–343CrossRefGoogle Scholar
  2. 2.
    Lenard JG, Pietrzyk M, Cser L (1999) Mathematical and physical simulation of the properties of hot rolled products. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Pietrzyk M, Lenard JG (1991) Thermal mechanical modelling of the flat rolling process. Springer-Verlag, BerlinCrossRefGoogle Scholar
  4. 4.
    Glowacki M (1995) Modelling of heat transfer, plastic flow and microstructural evolution during shape rolling. J Mat Proc Tech 53:159–166CrossRefGoogle Scholar
  5. 5.
    Glowacki M (1996) Simulation of rail rolling using the generalized plane-strain finite-element approach. J Mat Proc Tech 62:229–234CrossRefGoogle Scholar
  6. 6.
    Glowacki M (1998) Termomechaniczno–mikrostrukturalny model walcowania w wykrojach kształtowych. AGH, KrakowGoogle Scholar
  7. 7.
    Glowacki M (1996) Finite element three-dimensional modelling of the solidification of a metal forming charge. J Mat Proc Tech 60:501–504CrossRefGoogle Scholar
  8. 8.
    Pietrzyk M (1992) Metody numeryczne w przerobce plastycznej metali. AGH, KrakowGoogle Scholar
  9. 9.
    Siska P, Hojny M (2002) Computer simulation of influence of lubricant on cold drawing process of steel wire from material 11320. In: Proceedings of COMATECH, TrnavaGoogle Scholar
  10. 10.
    Aashuri H (2005) Globular structure of ZA27 alloy by thermomechanical and semi-solid treatment. Mat Sci Eng 391:77–85CrossRefGoogle Scholar
  11. 11.
    Ahmed SG (2005) An approximate method for evaporation problem with mushy zone. Eng Analysis Bound Elem 29:161–165zbMATHCrossRefGoogle Scholar
  12. 12.
    Chen CP, Tsao C (1997) Semi-solid deformation of non-dendritic structures phenomenological behavior. Acta Mater 45:1955–1968CrossRefGoogle Scholar
  13. 13.
    Chen YN, Wei JF, Zhao YQ (2009) Compressive deformation and forging behavior of Ti14 alloy in semi-solid state. Mat Sci Eng 520:16–22CrossRefGoogle Scholar
  14. 14.
    Choi JC, Park JH, Kim BM (2000) Finite element analysis of the combined extrusion of semi-solid material and its experimental verification. J Mat Proc Tech 105:49–54CrossRefGoogle Scholar
  15. 15.
    Choi JC, Park JH, Lee BK (1998) Finite element analysis of compression holding step in semi-solid forging and experimental confirmation. J Mat Proc Tech 81:450–457CrossRefGoogle Scholar
  16. 16.
    Dae CK, Gyu SM, Byung MK et al (2000) Finite element analysis for the semi-solid state forming of aluminium alloy considering induction heating. J Mat Proc Tech 100:95–104CrossRefGoogle Scholar
  17. 17.
    Eskin DG, Suyitno L (2004) Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog Mat Sci 5:629–711CrossRefGoogle Scholar
  18. 18.
    Gang C, Fengyu L, Shengjie Y et al (2016) Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions. J Alloy Compd 674:26–36CrossRefGoogle Scholar
  19. 19.
    Haghayeghi R, Zoqui EJ, Halvaee A (2005) An investigation on semi-solid Al-7Si-0.3 Mg alloy produced by mechanical stirring. J Mat Proc Tech 169:382–387CrossRefGoogle Scholar
  20. 20.
    Hong Y, Bingfen Z (2006) Thixotropic deformation behavior of semi-solid AZ61 magnesium alloy during compression process. Mat Sci Eng 132:179–182CrossRefGoogle Scholar
  21. 21.
    Hosseini Yekta F, Sadough Vanini SA (2015) Simulation the flow of semi-solid steel alloy using an enhanced model. Met Mater Int 21:913–922CrossRefGoogle Scholar
  22. 22.
    Hwang JH, Ko DC, Min GS et al (2000) Finite element simulation and experiment for extrusion of semi-solid Al 2024. Int J Mach Tools Man 40:1311–1328CrossRefGoogle Scholar
  23. 23.
    Kang CG, Jung HK (1999) Finite element analysis with deformation behavior modeling of globular microstructure in forming process of semi-solid materials. Int J MechSci 41:1423–1445zbMATHCrossRefGoogle Scholar
  24. 24.
    Kang CG, Kang BS, Kim JI (1998) An investigation of the mushy state forging process by the finite element method. J Mat Proc Tech 81:444–449CrossRefGoogle Scholar
  25. 25.
    Kang CG, Yoon JH (1997) A finite-element analysis on the upsetting process of semi-solid aluminum material. J Mat Proc Tech 66:76–84CrossRefGoogle Scholar
  26. 26.
    Kang CG, Choi JS, Kim KH (1999) The effect of strain rate on macroscopic behavior in the compression forming of semi-solid aluminum alloy. J Mat Proc Tech 88:159–168CrossRefGoogle Scholar
  27. 27.
    Kang CG, Jung YJ, Youn SW (2003) Horizontal reheating of aluminum alloys and semi-solid casting for a near net shape compressor component. J Mat Proc Tech 135:158–171CrossRefGoogle Scholar
  28. 28.
    Khosravi H, Eslami-Farsani R, Askari-Paykani M (2014) Modeling and optimization of cooling slope process parameters for semi-solid casting of A356 Al alloy. Trans Nonferr Met Soc China 24:961–968CrossRefGoogle Scholar
  29. 29.
    Koc M, Vazquez V, Witulski T et al (1996) Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys. J Mat Proc Tech 59:106–112CrossRefGoogle Scholar
  30. 30.
    Lapkowski W, Sinczak J, Rusz S (1997) Feasibility of metal forming in semi-liquid state. J Mat Proc Tech 63:260–264CrossRefGoogle Scholar
  31. 31.
    Lashkari O, Ghomashchi R (2008) Deformation behavior of semi-solid A356 Al–Si alloy at low shear rates: effect of fraction solid. Mater Sci Eng, A 486:333–340CrossRefGoogle Scholar
  32. 32.
    Lu Y, Li M, Huang W et al (2005) Deformation behavior and microstructural evolution during the semi-solid compression of Al–4 Cu–Mg alloy. Mat Char 54:423–430CrossRefGoogle Scholar
  33. 33.
    Martin CL, Favier D, Suery M (1999) Fracture behaviour in tension of viscoplastic porous metallic materials saturated with liquid. Int J Plast 15:981–1008zbMATHCrossRefGoogle Scholar
  34. 34.
    Prabhu TR (2016) Microstructure and mechanical properties of a thixoforged (semi solid state forged) Al–Cu–Mg alloy. Arch Civ Mech Eng 16:335–343CrossRefGoogle Scholar
  35. 35.
    Rongfu X, Xuelei T (2014) Tensile properties of the semi-solid state in solidifying aluminum alloys. Russian J Nonferr Met 55:443–449Google Scholar
  36. 36.
    Seo PK, Youn SW, Kang CG (2002) The effect of test specimen size and strain-rate on liquid segregation in deformation behavior of mushy state material. J Mat Proc Tech 131:551–557CrossRefGoogle Scholar
  37. 37.
    Shiomi M, Takano D, Osakada K et al (2003) Forming of aluminium alloy at temperatures just below melting point. Int J Mach Tools Man 43:229–235CrossRefGoogle Scholar
  38. 38.
    Yongnan CH, Chuang L, Fengying Z et al (2015) Effect of temperature on segregation and deformation mechanism of α + Ti2Cu alloy during semi-solid forging. Rare Met Mater Eng 44:1369–1373CrossRefGoogle Scholar
  39. 39.
    Yoon HJ, Im YT (2001) Finite element modeling of the deformation behavior of semi-solid materials. J Mat Proc Tech 113:153–159CrossRefGoogle Scholar
  40. 40.
    Wang JJ, Phillion AB, Lu GM (2014) Development of a visco-plastic constitutive modeling for thixoforming. J Alloy Compd 609:290–295CrossRefGoogle Scholar
  41. 41.
    Zhao YQ, Wu WL, Chang H (2006) Research on microstructure and mechanical properties of a new α + Ti2Cu alloy after semi-solid deformation. Mat Sci Eng 416:181–186CrossRefGoogle Scholar
  42. 42.
    Zhu Y, Tang J, Xiong Y et al (2001) The influences of the microstructure morphology of A356 alloy on its rheological behavior in the semi-solid state. Sci Tech Adv Mat 2:219–223CrossRefGoogle Scholar
  43. 43.
    Zhu MF, Hong CP (2001) A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys. ISIJ Inter 41:436–445CrossRefGoogle Scholar
  44. 44.
    Zu L, Luo S (2001) Study on the powder mixing and semi-solid extrusion forming process of SiCp/2024Al composites. J Mat Proc Tech 114:189–193CrossRefGoogle Scholar
  45. 45.
    Kirkwood DH, Suéry M, Kapranos P at al (2010) Semi-solid processing of alloys. Springer Series in Materials Science, Springer, Heidelberg Google Scholar
  46. 46.
    Cuiqing Z, Renbo S (2014) Evolution of microstructure and mechanical properties for 9Cr18 stainless steel during thixoforming. Mater Des 59:502–508CrossRefGoogle Scholar
  47. 47.
    Favier V, Atkinson HV (2011) Micromechanical modelling of the elastic-viscoplastic response of metallic alloys under rapid compression in the semi-solid state. Acta Mater 59:1271–1280CrossRefGoogle Scholar
  48. 48.
    Macioł P, Zalecki W, Kuziak R (2010) Results of experimental investigations of tool steel during forming in semi-solid state. Int J Mater Form 3:759–762CrossRefGoogle Scholar
  49. 49.
    Phillion AB, Cockcroft SL, Lee PD (2008) A three-phase simulation of the effect of microstructural features on semi-solid tensile deformation. Acta Mater 56:4328–4338CrossRefGoogle Scholar
  50. 50.
    Sistaninia M, Phillion AB, Drezet JM et al (2011) Simulation of semi-solid material mechanical behavior using a combined discrete/finite element method. Metall Mater Trans A 42:239–248CrossRefGoogle Scholar
  51. 51.
    Choi JC, Park JH, Kim BM (1999) The influence of induction heating on the microstructure of A356 for semi-solid forging. J Mat Proc Tech 87:46–52CrossRefGoogle Scholar
  52. 52.
    Jung HK, Kang CG (2002) Induction heating process of an Al–Si aluminum alloy for semi-solid die casting and its resulting microstructure. J Mat Proc Tech 120:355–364CrossRefGoogle Scholar
  53. 53.
    Jung HK, Kang CG (2000) Reheating process of cast and wrought aluminum alloys for thixoforging and their globularizationmechanizm. J Mat Proc Tech 104:244–253CrossRefGoogle Scholar
  54. 54.
    Kang CG, Seo PK, Jung HK (2003) Numerical analysis by new proposed coil design method in induction heating process for semi-solid forming and its experimental verification with globalization evaluation. Mat Sci Eng 341:121–138Google Scholar
  55. 55.
    Park JH, Choi JC, Kim YH et al (2002) A study of the optimum process for A356 Alloy in semi-solid forging. Int J Adv Man Tech 20:277–283CrossRefGoogle Scholar
  56. 56.
    Sang YL, Jung HL, Young SL (2001) Characterization of Al 7075 alloys after cold working and heating in the semi-solid temperature range. J Mat Proc Tech 111:42–47CrossRefGoogle Scholar
  57. 57.
    Seijiro M (2002) Application of resistance heating technique to mushy state forming of aluminium alloy. J Mat Proc Tech 126:477–482Google Scholar
  58. 58.
    Malinowski Z, Glowacki M, Pietrzyk M (1994) Finite element method in application to 3-D problems: simulation of the heating of slabs. Arch Met 39:278–294Google Scholar
  59. 59.
    Han HN, Lee Y, Oh KH et al (1996) Analysis of hot forging of porous metals. J Mat Sci Eng 206:81–89CrossRefGoogle Scholar
  60. 60.
    Dudek K, Glowacki M, Pietrzyk M (2000) Modelling of stress generated in steels by phase transformation. In: Proceedings of. Modellierung von Prozessen der Stahlerzeugung und Stahlverarbeitung, FreibergGoogle Scholar
  61. 61.
    Wray PJ (1982) Effect of carbon content on the plastic flow of plain carbon steels at elevated temperatures. Metall Trans 13A:125–134CrossRefGoogle Scholar
  62. 62.
    Lin CS, Sekhar JA (1993) Semi-solid deformation in multi-component nikelalumide—directionally solidified alloys. J Mat Sci 28:3581–3588CrossRefGoogle Scholar
  63. 63.
    Lin CS, Sekhar JA (1994) Solidification morphology and semi-solid deformation in superalloy Rene 108—equiaxed solidified microstructures. J Mat Sci 29:3637–3642CrossRefGoogle Scholar
  64. 64.
    Lin CS, Sekhar JA (1994) Solidification morphology and semi-solid deformation in superalloy Rene 108—directionally solidified alloys. J Mat Sci 29:5005–5013CrossRefGoogle Scholar
  65. 65.
    Wolf M, Kurz M (1981) The effect of the carbon content on solidification of steel in the continuous casting mold. Metall Trans 12B:88–93Google Scholar
  66. 66.
    Seol DJ, Won YM, Yeo T et al (2000) Mechanical behaviour of carbon steels in the temperature range of mushy zone. ISIJ Int 40:356–363CrossRefGoogle Scholar
  67. 67.
    Seol DJ, Won YM, Yeo T et al (1999) High temperature deformation behaviour of carbon steel in the austenite and δ-ferrite regions. ISIJ Int 39:91–98CrossRefGoogle Scholar
  68. 68.
    Bigot R, Favier V, Rouff C (2005) Characterisation of semi-solid material mechanical behaviour by indentation test. J Mat Proc Tech 160:43–53CrossRefGoogle Scholar
  69. 69.
    Ferrante M, Freitas E (1999) Rheology and microstructural development of a Al-4wt% Cu alloy in the semi-solid state. Mat Sci Eng 271:172–180CrossRefGoogle Scholar
  70. 70.
    Haaften WM, Kool W, Katgerman L (2002) Tensile behaviour of semi-solid industrial aluminium alloys AA3104 and AA5182. Mat Sci Eng A336:1–6CrossRefGoogle Scholar
  71. 71.
    Kopp R, Choi J, Neudenberger D (2003) Simple compression test and simulation of an Sn-15% Pb alloy in the semi-solid state. J Mat Proc Tech 135:317–323CrossRefGoogle Scholar
  72. 72.
    Lapkowski W, Pietrzyk M, Sinczak J (1992) Behaviour of metal alloys during plastic deformation in partly liquid state. J Mat Proc Tech 34:481–488CrossRefGoogle Scholar
  73. 73.
    Lewandowski MS, Overfelt RA (1999) High temperature deformation behavior of solid and semi-solid alloy 718. Acta Mat 47:4695–4710CrossRefGoogle Scholar
  74. 74.
    Martin L, Braccini M, Suery M (2002) Rheological behavior of the mushy zone at small strains. Mat Sci Eng A325:292–301CrossRefGoogle Scholar
  75. 75.
    Rokni MR, Zarei-Hanzaki A, Roostaei AA et al (2011) Constitutive base analysis of a 7075 aluminum alloy during hot compression testing. Mater Des 32:4955–4960CrossRefGoogle Scholar
  76. 76.
    Sigworth GK (1996) Rheological properties of metal alloys in the semi-solid state. Can Metall Q 35:101–122CrossRefGoogle Scholar
  77. 77.
    Hosseini F, Sadough SA, Pouyafar V et al (2013) The rheological behavior of HS6-5-2 tool steel for non-isothermal processing. Solid State Phenom 193:317–322Google Scholar
  78. 78.
    Hufschmidt M, Modigell M, Petera J (2004) Two-phase simulations as a development tool for thixoforming processes. Steel Research Int 75:513–518CrossRefGoogle Scholar
  79. 79.
    Jin SD, Hwan OK (2002) Phase-field modelling of the thermo-mechanical properties of carbon steels. Acta Mat 50:2259–2268CrossRefGoogle Scholar
  80. 80.
    Jing YL, Sumio S, Jun Y (2005) Microstructural evolution and flow stress of semi-solid type 304 stainless steel. J Mat Proc Tech 161:396–406CrossRefGoogle Scholar
  81. 81.
    Kalaki A, Ketabchi M (2013) Predicting the rheological behavior of AISI D2 semi-solid steel by plastic instability approach. American J of Mat Eng and Tech 1:41–45Google Scholar
  82. 82.
    Koke J, Modigell M (2003) Flow behavior of semi-solid metal alloys. J. Non-Newton Fluid Mech 112:141–160CrossRefGoogle Scholar
  83. 83.
    Kotrbacek P, Horsky J, Raudensky M et al (2000) Experimental study of steel behaviour in process of mushy state deformation. In: Proceedings of Metal forming, KrakowGoogle Scholar
  84. 84.
    Modigell M, Pape L, Maier HR (2006) Rheology of semi-solid steel alloys at temperatures up to 1500 °C. Solid State Phenom 117:606–609CrossRefGoogle Scholar
  85. 85.
    Modigell M, Pape L, Hufschmidt M (2004) The rheological behavior of metallic suspensions. Steel Res Int 75:506–512CrossRefGoogle Scholar
  86. 86.
    Monaghan J, Huppert H, Worster M (2005) Solidification using smoothed particle hydrodynamics. J Comput Phys 206:684–705zbMATHCrossRefGoogle Scholar
  87. 87.
    Mordechai S (ed) (2011) Application of Monte Carlo method in science and engineering. InTech, RijekaGoogle Scholar
  88. 88.
    Nagira T, Gourlay CM, Sugiyama A et al (2011) Direct observation of deformation in semi-solid carbon steel. Scr Mater 64:1129–1132CrossRefGoogle Scholar
  89. 89.
    Shimahara H, Baadjou R, Kopp R et al (2006) Investigation of flow behaviour and microstructure on X210CrW12 steel in semi-solid state. Solid State Phenom 117:189–192CrossRefGoogle Scholar
  90. 90.
    Suzuki HG, Nishimura S (1988) Physical simulation of continuous casting of steels. In: Symposium on physical simulation of welding, hot forming and continuous casting. CANMET, CanadaGoogle Scholar
  91. 91.
    Tseng AA, Horsky J, Raudensky M et al (2001) Deformation behavior of steels in mushy state. Mat and Des 22:83–92CrossRefGoogle Scholar
  92. 92.
    Yekta FH, Vanini SA (2015) Simulation the flow of semi-solid steel alloy using an enhanced model. Met Mater Int 21:913–922CrossRefGoogle Scholar
  93. 93.
    Alankar A, Mary A (2010) Constitutive behavior of as-cast aluminum alloys AA3104, AA5182 and AA6111 at below solidus temperatures. Mat Sci Eng 527:7812–7820CrossRefGoogle Scholar
  94. 94.
    Phillion AB, Thompson S, Cockcroft SL et al (2008) Tensile properties of as-cast aluminum alloys AA3104, AA6111 and CA31218 at above solidus temperatures. Mat Sci Eng 497:388–394CrossRefGoogle Scholar
  95. 95.
    Philion K, Maijer AB, Cockroft SL (2009) Constitutive behavior of as-cast magnesium alloy Mg–Al3–Zn1 in the semi-solid state. Scr Mat 60:427–430CrossRefGoogle Scholar
  96. 96.
    Ramadan M, Takita M, Nomura H (2006) Effect of semi-solid processing on solidification microstructure and mechanical properties of gray cast iron. Mat Sci Eng A417:166–173CrossRefGoogle Scholar
  97. 97.
    Bruni C, Mehtedi M, Gabrielli F (2014) Flow curve modelling of a ZM21 magnesium alloy and finite element simulation in hot deformation. Key Eng Mater 622–623:588–595CrossRefGoogle Scholar
  98. 98.
    Cai B, Karagadde S, Rowley D et al (2015) Time-resolved synchrotron tomographic quantification of deformation-induced flow in a semi-solid equiaxed dendritic Al–Cu alloy. Scripta Mater 103:69–72CrossRefGoogle Scholar
  99. 99.
    Cai B, Karagadde S, Yuan L et al (2014) In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al–Cu alloy. Acta Mater 76:371–380CrossRefGoogle Scholar
  100. 100.
    Fuloria D, Lee PD (2009) An X-ray microtomographic and finite element modeling approach for the prediction of semi-solid deformation behaviour in Al–Cu alloys. Acta Mater 57:5554–5562CrossRefGoogle Scholar
  101. 101.
    Kareh KM, Lee PD, Atwood RC et al (2014) Pore behaviour during semi-solid alloy compression: Insights into defect creation under pressure. Scripta Mater 89:73–76CrossRefGoogle Scholar
  102. 102.
    Sistaninia M, Terzi S, Phillion AB et al (2013) 3-D granular modeling and in situ X-ray tomographic imaging: a comparative study of hot tearing formation and semi-solid deformation in Al–Cu alloys. Acta Mater 61:3831–3841CrossRefGoogle Scholar
  103. 103.
    Cook R, Grocock PG, Thomas PM et al (1995) Development of the twin-roll casting process. J Mat Proc Tech 55:76–84CrossRefGoogle Scholar
  104. 104.
    Fan P, Zhou S, Liang X et al (1997) Thin strip casting of high speed steels. J Mat Proc Tech 63:792–796CrossRefGoogle Scholar
  105. 105.
    Haga T (2002) Semisolid strip casting using a twin roll caster equipped with a cooling slope. J Mat Proc Tech 131:558–561CrossRefGoogle Scholar
  106. 106.
    Haga T (2001) Semi-solid roll casting of aluminum alloy strip by melt drag twin roll caster. J Mat Proc Tech 111:64–68CrossRefGoogle Scholar
  107. 107.
    Haga T, Nishiyama T, Suzuki S (2003) Strip casting of A5182 alloy using a melt drag twin-roll caster. J Mat Proc Tech 133:103–107CrossRefGoogle Scholar
  108. 108.
    Haga T, Suzuki S (2001) A high speed twin roll caster for aluminum alloy strip. J Mat Proc Tech 113:291–295CrossRefGoogle Scholar
  109. 109.
    Haga T, Suzuki S (2003) A twin-roll caster to cast clad strip. J Mat Proc Tech 138:366–371CrossRefGoogle Scholar
  110. 110.
    Haga T, Takahashi K (2004) Casting of composite strip using a twin roll caster. J Mat Proc Tech 158:701–705CrossRefGoogle Scholar
  111. 111.
    Haga T, Suzuki S (2003) Melt ejection twin roll caster for the strip casting of aluminum alloy. J Mat Proc Tech 137:92–95CrossRefGoogle Scholar
  112. 112.
    Haga T, Suzuki S (2001) Roll casting of aluminum alloy strip by melt drag twin roll caster. J Mat Proc Tech 118:165–168CrossRefGoogle Scholar
  113. 113.
    Haga T, Suzuki S (2003) Study on high-speed twin-roll caster for aluminum alloys. J Mat Proc Tech 144:895–900CrossRefGoogle Scholar
  114. 114.
    Haga T, Takahashi K, Ikawa M et al (2003) A vertical-type twin roll caster for aluminum alloy strips. J Mat Proc Tech 140:610–615CrossRefGoogle Scholar
  115. 115.
    Haga T, Tkahashi K, Ikawa M et al (2004) Twin roll casting of aluminum alloy strips. J Mat Proc Tech 154:42–47CrossRefGoogle Scholar
  116. 116.
    Kuznetsov AV (1999) Parametric study of macrosegregation in the horizontal strip casting process for different cooling rates and different casting speeds. Heat Mass Transf 35:197–203CrossRefGoogle Scholar
  117. 117.
    Park CM, Kim WS, Park GJ (2003) Thermal analysis of the roll in the strip casting process. Mech Res Comm 30:297–310CrossRefGoogle Scholar
  118. 118.
    Park JY, Oh KH (2000) Texture and deformation behavior through thickness direction in strip-cast 4.5wt% Si steel sheet. ISIJ Int 40:210–215Google Scholar
  119. 119.
    Seo PK, Park KJ, Kang CG (2004) Semi-solid die casting process with three steps die system. J Mat Proc Tech 154:442–449CrossRefGoogle Scholar
  120. 120.
    Spinelli JE, Tosetti JP, Santos CA et al (2004) Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel. J Mat Proc Tech 150:255–262CrossRefGoogle Scholar
  121. 121.
    Yun M, Lokyer S, Hunt JD (2000) Twin roll casting of aluminium alloys. Mat Sci Eng A280:116–123CrossRefGoogle Scholar
  122. 122.
    Watari H, Davey K, Rasgado MT et al (2004) Semi-solid manufacturing process of magnesium alloys by twin-roll casting. J Mat Proc Tech 156:1662–1667CrossRefGoogle Scholar
  123. 123.
    Marongiu EC, Lebeoeuf F, Caro J et al (2010) Free surface flows simulations in pelton turbines using an hybrid SPH-ALE method. J Hydraul Res 48:40–49CrossRefGoogle Scholar
  124. 124.
    Project Report (AGH Kraków-IMŻ Gliwice), Number: B0–1124, 2001 (not published)Google Scholar
  125. 125.
    Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148:227–264MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389zbMATHCrossRefGoogle Scholar
  127. 127.
    Lucy LB (1997) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRefGoogle Scholar
  128. 128.
    Zhang L, Shen H, Rong Y et al (2007) Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Mater Sci Eng 466:71–78CrossRefGoogle Scholar
  129. 129.
    Mingming T, David J (2014) An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. Int J Heat Mass Transf 73:284–292CrossRefGoogle Scholar
  130. 130.
    Xinrong S, Daisuke S, Kazuhiro N (2013) Cartesian mesh with a novel hybrid WENO/meshless method for turbulent flow calculations. Comput Fluids 84:69–86MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Rogers BD, Longshaw SM (2015) Automotive fuel cell sloshing under temporally and spatially varying high acceleration using GPU-based smoothed particle hydrodynamics (SPH). Adv Eng Softw 83:31–44CrossRefGoogle Scholar
  132. 132.
    Cleary PW, Ha J, Prakash M et al (2006) 3D SPH flow predictions and validation for high pressure die casting of automotive component. Appl Math Model 30:1406–1427CrossRefGoogle Scholar
  133. 133.
    Cartwright BK, Chhor A, Groenenboom P (2010) Simulation of a helicopter ditching with emergency flotation devices. 5th international Spheric workshop, Manchester, 2010Google Scholar
  134. 134.
    Pineau F, D’Amours G (2011) Application of LS-DYNA SPH formulation to model semi-solid metal casting. 8th European LS-DYNA Users Conference, StrasbourgGoogle Scholar
  135. 135.
    Pineau F, D’Amours G (2012) SPH model approach used to predict skin inclusions into semisolid metal castings. Modeling and simulation in materials processing. Wiley, HobokenGoogle Scholar
  136. 136.
    Cleary PW, Prakash M, Das R et al (2012) Modelling of metal forging using SPH. Appl Math Model 36:3836–3855MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Jianga F, Oliveiraa M, Sousaa ACM (2007) Mesoscale SPH modeling of fluid flow in isotropic porous media. Comput Phys Commun 176:471–480CrossRefGoogle Scholar
  138. 138.
    Limido J, Espinosa C, Salaun M et al (2011) Metal cutting modelling SPH approach. Int J Mach Mach Mater 9:177–196Google Scholar
  139. 139.
    Xu J, Wang J (2014) Interaction methods for the SPH parts in LS-DYNA. 13th International LS-DYNA Users Conference, DetroitGoogle Scholar
  140. 140.
    Rabczuk T, Xiao SP, Sauer M (2006) Coupling of mesh-free methods with finite elements: basic concepts and test results. Com Num Met Eng 22:1031–1065MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Mitsume N, Yoshimura S, Murotani K et al (2015) A hybrid finite element and mesh-free particle method for disaster-resilient design of structures. International workshop on Nuclear safety, Berkeley, 22–24 March 2015Google Scholar
  142. 142.
    Lewis RW, Roberts PM (1987) Finite element simulation of solidification problems. Appl Sci Res 44:61–92zbMATHCrossRefGoogle Scholar
  143. 143.
    Voller VR, Swaminathan CR, Thomas BG (1990) Fixed grid techniques for phase change problems: a review. Intern J Numer Methods Eng 30:875–898zbMATHCrossRefGoogle Scholar
  144. 144.
    Gandin ChA, Rappaz M (1994) A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Matall 42:2233–2246CrossRefGoogle Scholar
  145. 145.
    Gandin ChA, Rappaz M (1997) A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Matall 45:2187–2195CrossRefGoogle Scholar
  146. 146.
    Gandin CHA, Desbiolles JL, Rappaz M et al (1999) A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures. Metall Mater Trans 30A:3153–3165CrossRefGoogle Scholar
  147. 147.
    Rappaz M, Gandin CHA, Desbiolles JL et al (1996) Prediction of grain structures in various solidification processes. Metall Mater Trans 27A:695–705CrossRefGoogle Scholar
  148. 148.
    Brown SGR, Brucet NB (1995) Three-dimensional cellular automaton models of microstructural evolution during solidification. J Mater Sci 30:1144–1150CrossRefGoogle Scholar
  149. 149.
    Chan V (ed) (2013) Theory and application of Monte Carlo simulation. InTech, RijekaGoogle Scholar
  150. 150.
    Das A, Fan Z (2004) A Monte Carlo simulation of solidification structure formation under melt shearing. Mater Sci Eng 36:330–335CrossRefGoogle Scholar
  151. 151.
    Mode JC (ed) (2011) Application of Monte Carlo methods in biology, medicine and other field of science. InTech, RijekaGoogle Scholar
  152. 152.
    Carron D et al (2010) Modelling of precipitation during friction stir welding of an Al–Mg–Si alloy. Tech Mech 30:29–44Google Scholar
  153. 153.
    Li MY, Kannatey EA (2002) Monte Carlo simulation of heat-affected zone microstructure in laser-beam-welded nickel sheet. Weld J 81:1–12Google Scholar
  154. 154.
    Raabe D (2000) Scaling Monte Carlo kinetics of the potts model using rate theory. Acta Mater 48:1617–1628CrossRefGoogle Scholar
  155. 155.
    Loren S, Svensson T (2012) Second moment reliability evaluation vs. Monte Carlo simulations for weld fatigue strength. Qual Reliab Eng Intern 28:793–991CrossRefGoogle Scholar
  156. 156.
    Amitabha D, Eric JM (2001) A Monte Carlo simulation of solidification structures of binary alloys. Philos Mag A 11:2725–2742Google Scholar
  157. 157.
    Das A, Ji S, Fan Z (2002) Morphological development of solidification structures under forced fluid flow: a Monte-Carlo simulation. Acta Mater 18:4571–4585CrossRefGoogle Scholar
  158. 158.
    Gao J, Thompson RG (1996) Monte Carlo simulation of solidification. Acta Met 44:77–86Google Scholar
  159. 159.
    Gao J, Thompson RG (1996) Real time-temperature models for Monte Carlo simulations of normal grain growth. Acta Met 44:4565–4570CrossRefGoogle Scholar
  160. 160.
    Maazi N (2017) Conversion of Monte Carlo steps to real time for grain growth simulation. Adv Math Phys 2017:1–8CrossRefGoogle Scholar
  161. 161.
    Mishra S, DebRoy T (2004) Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti–6Al–4 V welds. Acta Mater 52:1183–1192CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and ModellingAGH University of Science and TechnologyKrakówPoland

Personalised recommendations