Skip to main content

24 Bioclimatic Dwellings for the Island of Tenerife: 20 Years Later

  • Chapter
  • First Online:
Seaside Building Design: Principles and Practice

Part of the book series: Innovative Renewable Energy ((INREE))

  • 558 Accesses

Abstract

In March 1995, the ITER (Instituto Tecnológico y de Energías Renovables), along with the Excellent Island Government of Tenerife (Cabildo Insular de Tenerife), launched an international competition for 25 bioclimatic dwellings to be built in Tenerife, Canary Islands, homologated by the International Union of Architects (UIA). The International Tender counted on the College of Architects of the Canary Islands to organize a call for preliminary projects of 25 one-family dwellings located in an area within the Wind Park of Tenerife, near the sea, at the south-east of the island (Fig. 9.1). The inception of the competition can be traced back to 1995, in the Summit of the Earth in Rio de Janeiro (1992). One of the key points of this meeting was to make a statement concerning the protection of the environment (General Assembly of the United Nations 2012). Consequently, the projects in Tenerife were to be designed following bioclimatic principles adapted to the climatic conditions (López de Asiaín 2001) of the island’s seaside environment. Moreover, the integration of recycled and recyclable materials was encouraged, as well as the use of renewable energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://www.gobiernodecanarias.org/istac/

  2. 2.

    http://www.iter.es/

References

  • Allard, F. (1998). Natural ventilation in buildings: A design handbook. London: James & James.

    Google Scholar 

  • Cendagorta-Galarza, M., & Galván, G. (1996). Twenty-five bioclimatic dwellings for the island of Tenerife. Tenerife: ITER.

    Google Scholar 

  • Coch, H. (1998). Bioclimatism in vernacular architecture. Renewable and Sustainable Energy Reviews, 2, 67–87.

    Article  Google Scholar 

  • Cornoldi, A., & Los, S. (1982). Hábitat y energía. Barcelona: Gustavo Gili.

    Google Scholar 

  • Dorta Antequera, P. (1993). El clima: tipos de tiempo. Geografía de Canarias (Vol. 1). Las Palmas de Gran Canaria: Prensa Ibérica.

    Google Scholar 

  • Feduchi, L. (1978). Itinerarios de arquitectura popular española. 4-Los pueblos blancos. Barcelona: Editorial Blume.

    Google Scholar 

  • Flavin, C. (1989). Slowing global warming: A worldwide strategy. Washington: Worldwatch Institute.

    Google Scholar 

  • Flores, C. (1973–1977). Arquitectura popular española. Parte cuarta: la arquitectura popular en el archipiélago canario. Madrid: Aguilar.

    Google Scholar 

  • General Assembly of the United Nations. (2012). The future we want; A/RES/66/288*.

    Google Scholar 

  • Givoni, B. (1969). Man, climate and architecture. Amsterdam: Elsevier.

    Google Scholar 

  • Givoni, B. (1994). Passive and low energy cooling of buildings. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Houghton, J. T. (2004). Global warming: The complete briefing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • López de Asiaín, J. (2001). Arquitectura, ciudad, medioambiente. Sevilla: Universidad de Sevilla Secretariado de Publicaciones.

    Google Scholar 

  • Luna, M., & Lucas, M. (Eds.). (2007). Arquitectura tradicional y entorno construido. Murcia: Trenti.

    Google Scholar 

  • Martin Vide, J., & Olcina Cantos, J. (2001). Climas y tiempos de España. Madrid: Alianza.

    Google Scholar 

  • Mazria, E. (1979). The passive solar energy book. Emmaus: Rodale Press.

    Google Scholar 

  • Neila-González, F. J. (2004). Arquitectura bioclimática en un entorno sostenible. Madrid: Munilla-Lería.

    Google Scholar 

  • Olgyay, V. (1963). Design with climate: Bioclimatic approach to architectural regionalism. Princeton: University Press.

    Google Scholar 

  • Olgyay, A., & Olgyay, V. (1976). Solar control and shading devices. Princeton: Princeton University Press.

    Google Scholar 

  • Sancho, J. M., Riesco, J., Jiménez, C., Sánchez de Cos, M. C., Montero, J., & López, M. (2005). Atlas de radiación solar en España utilizando datos del SAF de Clima de EUMETSAT. http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/atlas_radiacion_solar

  • Santamouris, M., & Asimakopolous, D. (1996). Passive cooling of buildings. London: James & James.

    Google Scholar 

  • Serra Florensa, R. (1989). Clima, lugar y arquitectura. Madrid: CIEMAT DL.

    Google Scholar 

  • Serra Florensa, R., & Coch, H. (2001). Arquitectura y energía natural. Barcelona: Edicions UPC.

    Google Scholar 

  • Wright, D. (1983). Arquitectura solar natural: un texto pasivo. México: Gustavo Gili.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Lopez-Besora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez-Besora, J., Coch Roura, H. (2018). 24 Bioclimatic Dwellings for the Island of Tenerife: 20 Years Later. In: Sayigh, A. (eds) Seaside Building Design: Principles and Practice. Innovative Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-67949-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67949-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67948-8

  • Online ISBN: 978-3-319-67949-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics