24 Bioclimatic Dwellings for the Island of Tenerife: 20 Years Later

Part of the Innovative Renewable Energy book series (INREE)


In March 1995, the ITER (Instituto Tecnológico y de Energías Renovables), along with the Excellent Island Government of Tenerife (Cabildo Insular de Tenerife), launched an international competition for 25 bioclimatic dwellings to be built in Tenerife, Canary Islands, homologated by the International Union of Architects (UIA). The International Tender counted on the College of Architects of the Canary Islands to organize a call for preliminary projects of 25 one-family dwellings located in an area within the Wind Park of Tenerife, near the sea, at the south-east of the island (Fig. 9.1). The inception of the competition can be traced back to 1995, in the Summit of the Earth in Rio de Janeiro (1992). One of the key points of this meeting was to make a statement concerning the protection of the environment (General Assembly of the United Nations 2012). Consequently, the projects in Tenerife were to be designed following bioclimatic principles adapted to the climatic conditions (López de Asiaín 2001) of the island’s seaside environment. Moreover, the integration of recycled and recyclable materials was encouraged, as well as the use of renewable energy systems.


Instituto Tecnológico Y De Energías Renovables (ITER) Bioclimatic Architecture Solar Gain Bioclimatic Strategies Solar Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allard, F. (1998). Natural ventilation in buildings: A design handbook. London: James & James.Google Scholar
  2. Cendagorta-Galarza, M., & Galván, G. (1996). Twenty-five bioclimatic dwellings for the island of Tenerife. Tenerife: ITER.Google Scholar
  3. Coch, H. (1998). Bioclimatism in vernacular architecture. Renewable and Sustainable Energy Reviews, 2, 67–87.CrossRefGoogle Scholar
  4. Cornoldi, A., & Los, S. (1982). Hábitat y energía. Barcelona: Gustavo Gili.Google Scholar
  5. Dorta Antequera, P. (1993). El clima: tipos de tiempo. Geografía de Canarias (Vol. 1). Las Palmas de Gran Canaria: Prensa Ibérica.Google Scholar
  6. Feduchi, L. (1978). Itinerarios de arquitectura popular española. 4-Los pueblos blancos. Barcelona: Editorial Blume.Google Scholar
  7. Flavin, C. (1989). Slowing global warming: A worldwide strategy. Washington: Worldwatch Institute.Google Scholar
  8. Flores, C. (1973–1977). Arquitectura popular española. Parte cuarta: la arquitectura popular en el archipiélago canario. Madrid: Aguilar.Google Scholar
  9. General Assembly of the United Nations. (2012). The future we want; A/RES/66/288*.Google Scholar
  10. Givoni, B. (1969). Man, climate and architecture. Amsterdam: Elsevier.Google Scholar
  11. Givoni, B. (1994). Passive and low energy cooling of buildings. New York: Van Nostrand Reinhold.Google Scholar
  12. Houghton, J. T. (2004). Global warming: The complete briefing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. López de Asiaín, J. (2001). Arquitectura, ciudad, medioambiente. Sevilla: Universidad de Sevilla Secretariado de Publicaciones.Google Scholar
  14. Luna, M., & Lucas, M. (Eds.). (2007). Arquitectura tradicional y entorno construido. Murcia: Trenti.Google Scholar
  15. Martin Vide, J., & Olcina Cantos, J. (2001). Climas y tiempos de España. Madrid: Alianza.Google Scholar
  16. Mazria, E. (1979). The passive solar energy book. Emmaus: Rodale Press.Google Scholar
  17. Neila-González, F. J. (2004). Arquitectura bioclimática en un entorno sostenible. Madrid: Munilla-Lería.Google Scholar
  18. Olgyay, V. (1963). Design with climate: Bioclimatic approach to architectural regionalism. Princeton: University Press.Google Scholar
  19. Olgyay, A., & Olgyay, V. (1976). Solar control and shading devices. Princeton: Princeton University Press.Google Scholar
  20. Sancho, J. M., Riesco, J., Jiménez, C., Sánchez de Cos, M. C., Montero, J., & López, M. (2005). Atlas de radiación solar en España utilizando datos del SAF de Clima de EUMETSAT.
  21. Santamouris, M., & Asimakopolous, D. (1996). Passive cooling of buildings. London: James & James.Google Scholar
  22. Serra Florensa, R. (1989). Clima, lugar y arquitectura. Madrid: CIEMAT DL.Google Scholar
  23. Serra Florensa, R., & Coch, H. (2001). Arquitectura y energía natural. Barcelona: Edicions UPC.Google Scholar
  24. Wright, D. (1983). Arquitectura solar natural: un texto pasivo. México: Gustavo Gili.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Architecture & Energy, School of ArchitectureUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of Architectural TechnologySchool of Architecture, UPCBarcelonaSpain

Personalised recommendations