Skip to main content

A Non-local Model Illustrating Replicator Dynamics

  • Chapter
  • First Online:
Non-Local Partial Differential Equations for Engineering and Biology

Part of the book series: Mathematics for Industry ((MFI,volume 31))

  • 984 Accesses

Abstract

The current chapter discusses a utilization from the field of evolutionary game dynamics and in particular from its subarea called replicator dynamics . Considering an infinite continuous strategy space, which for example might be considered as the sampling space of a continuously varying trait of a biological population, as well as payoff functions of Gaussian type we build up a non-local degenerate parabolic problem. As it is appropriate for degenerate problems, a regularized approximation is constructed and then some a priori estimates for its solutions are obtained. Using the derived estimates, we prove that solutions converge to the trivial solution if the initial population is small, whereas they undergo a blow-up in finite time if the initial population is large. In particular, in the latter case, it is shown that the blow-up set coincides with the whole strategy space, i.e. the finite-time blow-up is global.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angenent, S.B., Fila, M.: Interior gradient blow-up in a semilinear parabolic equation. Differ. Integral Equ. 9(5), 865–877 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Aronson, D.G.: The porous medium equation. Nonlinear Diffusion Problems. Lecture Notes in Mathematics, vol. 1224, pp. 1–46. Springer, Berlin (1986)

    Google Scholar 

  4. Arrieta, J.M., Rodriguez-Bernal, A., Souplet, P.: Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena Ann. Scu. Norm. Sup. Pisa Cl. Sci. 3, 1–15 (2004)

    Google Scholar 

  5. Bertsch, M., Peletier, L.A.: A positivity property of solutions of nonlinear diffusion equations. J. Differ. Eq. 53, 30–47 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsch, M., Ughi, M.: Positivity properties of viscosity solutions of a degenerate parabolic equation. Nonlinear Anal. TMA 14(7), 571–592 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsch, M., Dal Passo, R., Ughi, M.: Discontinuous “viscosity” solutions of a degenerate parabolic equation. Trans. Am. Math. Soc. 320(2), 779–798 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Bomze, I.: Dynamical aspects of evolutionary stability. Mon. Math. 110, 189–206 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, W., Duan, Z., Xie, C.: The blow-up rate for a degenerate parabolic equation with a non-local source. J. Math. Anal. Appl. 264, 577–597 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dlotko, T.: Examples of parabolic problems with blowing-up derivatives. J. Math. Anal. Appl. 154, 226–237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dugatin, L.A., Reeve, H.K. (eds.): Game Theory and Animal Behaviour. Oxford UP, Oxford (1998),

    Google Scholar 

  12. Du, L., Xiang, Z.: A further blow-up analysis for a localized porous medium equation. Appl. Math. Comput. 179, 200–208 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    Google Scholar 

  14. Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Ind. Univ. Math. J. 34, 425–447 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedman, A., McLeod, B.: Blow-up of solutions of nonlinear degenerate parabolic equations. Arch. Rational Mech. Anal. 96, 55–80 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Galaktionov, V.A., Vázquez, J.L.: Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation. SIAM J. Math. Anal. 24, 1254–1276 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga, Y., Kohn, R.V.: Nondegeneracy of blowup for semilinear heat equations. Commun. Pure Appl. Math. 42, 845–884 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haccou, P., Iwasa, Y.: Optical mixed strategies in stochastic environments. Theor. Popul. Biol. 47, 212–243 (1995)

    Article  MATH  Google Scholar 

  19. Haccou, P., Iwasa, Y.: Robustness of optimal mixed strategies. J. Math. Biol. 36, 485–496 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. 40, 479–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kavallaris, N.I., Lankeit, J., Winkler, M.: On a degenerate non-local parabolic problem describing infinite dimensional replicator dynamics. SIAM J. Math. Anal. 49(2), 954–983 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kravvaritis, C., Papanicolaou, V.G.: Singular equilibrium solutions for a replicator dynamics model. Electron. J. Differ. Equ. 87, 1–8 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Kravvaritis, D., Papanicolaou, V.G., Yannacopoulos, A.N.: Similarity solutions for a replicator dynamics equation. Ind. Univ. Math. J. 57, 1929–1946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kravvaritis, D., Papanicolaou, V.G., Xepapadeas, A., Yannacopoulos, A.N.: On a class of operator equations arising in infinite dimensional replicator dynamics. Nonlinear Anal. RWA 11, 2537–2556 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krugman, P.: The self-organizing economy. Mitsui Lectures in Economics, Wiley-Blackwell, Cambridge (1996)

    Google Scholar 

  26. Lacey, A.A.: Global blow-up of a nonlinear heat equation. Proc. Roy. Soc. Edinb. Sect. A 104, 161–167 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. AMS, Providence (1968)

    Google Scholar 

  28. Lankeit, J.: Equilibration of unit mass solutions to a degenerate parabolic equation with a nonlocal gradient nonlinearity. Nonlinear Anal. 135, 236–248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liang, F., Li, Y.: Blow-up for a nonlocal parabolic equation. Nonlinear Anal. 71, 3551–3562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Y., Souplet, Ph: Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains. Commun. Math. Phys. 293, 499–517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Q., Li, Y., Gao, H.: Uniform blow-up rate for a nonlocal degenerate parabolic equations. Nonlinear Anal. 66, 881–889 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luckhaus, S., Dal Passo, R.: A Degenerate diffusion equation not in divergence form. J. Differ. Equ. 69, 1–14 (1987)

    Article  MATH  Google Scholar 

  33. Smith, J.M.: Evolution and The Theory of Games. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  34. Oechssler, J., Riedel, F.: Evolutionary dynamics on infinite strategy spaces. Econ. Theory 17, 141–162 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oechssler, J., Riedel, F.: On the dynamic foundation of evolutionary stability in continuous models. J. Econ. Theory 107, 223–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Papanicolaou, V.G., Smyrlis, G.: Similarity solutions for a multi-dimensional replicator dynamics equation. Nonlinear Anal. TMA 71, 3185–3196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Papanicolaou, V.G., Vasilakopoulou, K.: Similarity solutions of a replicator dynamics equation associated to a continuum of pure strategies. Electron. J. Differ. Equ. 231, 1–16 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Papanicolaou, V.G., Vasilakopoulou, K.: Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. J. Dyn. Games 3, 51–74 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Quittner, P., Souplet, Ph: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhäuser Advanced Texts, Basel (2007)

    Google Scholar 

  40. Schuster, P., Sigmund, K.: Replicator dynamics. J. Theor. Biol. 100, 533–538 (1983)

    Article  MathSciNet  Google Scholar 

  41. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mihailov, A.P.: Blow-Up in Quasilinear Parabolic Equations. De Gruyter Expositions in Mathematics, Berlin (1995)

    Google Scholar 

  42. Sigmund, K.: Games of Life. Penguin, Harmondsworth (1993)

    Google Scholar 

  43. Souplet, Ph: Blow-up in nonlocal reaction-diffusion equations. SIAM J. Math. Anal. 29, 1301–1334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Souplet, Ph: Uniform blow-up profiles and boundary behaviour for diffusion equations with nonlocal nonlinear source. J. Differ. Equ. 153, 374–406 (1999)

    Article  MATH  Google Scholar 

  45. Souplet, Ph: Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions. Differ. Int. Equ. 15, 237–256 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Souplet, Ph: Uniform blow-up profile and boundary behaviour for a non-local reaction-diffusion equation with critical damping. Math. Methods Appl. Sci. 27, 1819–1829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stinner, C., Winkler, M.: Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity. Indiana Univ. Math. J. 56(5), 2233–2264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stinner, C., Winkler, M.: Finite time vs. infinite time gradient blow-up in a degenerate diffusion equation. Indiana Univ. Math. J. 57(5), 2321–2354 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Taylor, P.D., Jonker, L.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, M., Wang, Y.: Properties of positive solutions for non-local reaction-diffusion problems. Math. Methods Appl. Sci. 19(14), 1141–1156 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wiegner, M.: A degenerate diffusion equation with a nonlinear source term. Nonlinear Anal. TMA 28, 1977–1995 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Winkler, M.: A critical exponent in a degenerate parabolic equation. Math. Methods Appl. Sci. 25(11), 911–925 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Winkler, M.: Blow-up of solutions to a degenerate parabolic equation not in divergence form. J. Differ. Equ. 192(2), 445–474 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Winkler, M.: Boundary behaviour in strongly degenerate parabolic equations. Acta Math. Univ. Comen. 72(1), 129–139 (2003)

    MATH  Google Scholar 

  55. Winkler, M.: Propagation vs. constancy of support in the degenerate parabolic equation \(u_t=f(u) \Delta u\), Rend. Istit. Mat. Univ. Trieste XXXVI, 1–15 (2004)

    Google Scholar 

  56. Winkler, M.: Large time behaviour and stability of equilibria of degenerate parabolic equations. J. Dyn. Differ. Equ. 17(2), 331–351 (2005)

    Article  MATH  Google Scholar 

  57. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos I. Kavallaris .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kavallaris, N.I., Suzuki, T. (2018). A Non-local Model Illustrating Replicator Dynamics. In: Non-Local Partial Differential Equations for Engineering and Biology. Mathematics for Industry, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-67944-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67944-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67942-6

  • Online ISBN: 978-3-319-67944-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics