Skip to main content

Part of the book series: Mathematics for Industry ((MFI,volume 31))

  • 973 Accesses

Abstract

The current chapter considers two main applications associated with Ohmic heating phenomena. Initially we deal with an application from food industry, building up two one-dimensional non-local problems illustrating the evolution of the temperature of the sterilized food. The former model consists of a diffusion-convection equation while the latter of a convection equation with non-local convection velocity. Both of these non-local models are investigated in terms of their stability and the occurrence of finite-time blow-up, where the latter in the current context indicates food burning. Different approaches should be followed though depending on the monotonicity of the nonlinearity appearing in the non-local term, since no maximum principle is available for the non-local parabolic problem when this nonlinearity is increasing. The second part of the chapter is devoted to the study of a non-local parabolic model illustrating the operation of the thermistor device. Notably, conditions under which finite-time blow-up, which here indicates the destruction of the thermistor device, occurs are investigated by using both energy and comparison methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Refai, M., Kavallaris, N.I., Hajji, M.A.: Monotone iterative sequences for non-local elliptic problems. Eur. J. Appl. Math. 22(6), 533–552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antontsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness, blow-up. SIAM J. Math. Anal. 25(4), 1128–1156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antontsev, S.N., Chipot, M.: The analysis of blow-up for the thermistor problem. Sib. Math. J. 38, 827–841 (1997)

    Article  Google Scholar 

  5. Bebernes, J.W., Lacey, A.A.: Global existence and finite-time blow-up for a class of nonlocal parabolic problems. Adv. Differ. Equ. 2, 927–953 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Bebernes, J.W., Talaga, P.: Nonlocal problems modelling shear banding. Commun. Appl. Nonlinear Anal. 3, 79–103 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Bebernes, J.W., Li, C., Talaga, P.: Single-point blowup for nonlocal parabolic problems. Phys. D 134, 48–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biss, C.H., Coombers, S.A., Skudder, P.J.: The development and applications of Ohmic heating for continuous processing of particulate foodstuffs. In: Field, R.W., Howell, J.A. (eds.) Process Engineering in the Food Industry, pp. 17–27. Elsevier, London (1989)

    Google Scholar 

  9. Carillo, J.A.: On a non-local elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction. Nonlinear Anal. 32, 97–115 (1998)

    Article  MathSciNet  Google Scholar 

  10. Chafee, N.: The electric ballast resistor: homogeneous and nonhomogeneous equilibria. In: de Mottoni, P., Salvadori, L. (eds.) Nonlinear Differential Equations: Invariance Stability and Bifurcations, pp. 97–127. Academic Press, New York (1981)

    Chapter  Google Scholar 

  11. Chipot, M., Lovat, B.: Some remarks on non local elliptic and parabolic problems. Nonlinear Anal. TMA. 30, 4619–4627 (1997)

    Article  MATH  Google Scholar 

  12. De Alwis, A.A.P., Fryer, P.J.: Operability of the Ohmic heating process: electrical conductivity effects. J. Food Eng. 15, 21–48 (1992)

    Article  Google Scholar 

  13. Fowler, A.C., Frigaard, I., Howison, S.D.: Temperature surges in current - limiting circuit devices. SIAM J. Appl. Math. 52, 998–1011 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Freitas, P.: A nonlocal Sturm–Liouville eigenvalue problem. Proc. Rog. Soc. Ed 124A, 169–188 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34, 425–447 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fryer, P.J., De Alwis, A.A.P., Koury, E., Stapley, A.G.F., Zhang, L.: Ohmic processing of solid-liquid mixtures: heat generation and convection effects. J. Food Eng. 18, 101–125 (1993)

    Article  Google Scholar 

  17. Hardy, G.H., Littlewood, J.E., Polya, E.: Inequalities. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  18. Kavallaris, N.I.: Blow-up and global existence of solutions of some non-local problems arising in Ohmic heating process. Ph.D. Thesis, National Technical University of Athens (2000) (in Greek)

    Google Scholar 

  19. Kavallaris, N.I.: Asymptotic behaviour and blow-up for a nonlinear diffusion problem with a non-local source term. Proc. Edinb. Math. Soc. 47, 375–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kavallaris, N.I.: Explosive solutions of a stochastic non-local reaction-diffusion equation arising in shear band formation. Math. Methods Appl. Sci. 38(16), 3564–3574 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kavallaris, N.I., Nadzieja, T.: On the blow-up of the non-local thermistor problem. Proc. Edinb. Math. Soc. 50, 389–409 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kavallaris, N.I., Tzanetis, D.E.: Blow-up and stability of a nonlocal diffusion-convection problem arising in Ohmic heating of foods. Differ. Integral Equ. 15, 271–288 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Kavallaris, N.I., Tzanetis, D.E.: An Ohmic heating non-local diffusion-convection problem for the Heaviside function. ANZIAM J. 44 (E), E114–E142 (2002)

    Google Scholar 

  24. Kavallaris, N.I., Tzanetis, D.E.: Behaviour of a non-local reactive-convective problem with variable velocity in Ohmic heating of food, Nonlocal elliptic and parabolic problems, Banach Center Publ. 66, Polish Acad. Sci. Warsaw, 189-198 (2004)

    Google Scholar 

  25. Kavallaris, N.I., Tzanetis, D.E.: On the blow-up of a non-local parabolic problem. Appl. Math. Lett. 19, 921–925 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kavallaris, N.I., Nikolopoulos, C.V., Tzanetis, D.E.: Estimates of blow-up time for a non-local problem modelling an Ohmic heating process. Eur. J. Appl. Math. 13, 337–351 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kavallaris, N.I., Lacey, A.A., Tzanetis, D.E.: Global existence and divergence of critical solutions of a non-local parabolic problem in Ohmic heating process. Nonlinear Anal. TMA 58, 787–812 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lacey, A.A.: Mathematical analysis of thermal runawway for spartially inhomogeneous reactions. SIAM J. Appl. Math. 43, 1350–1366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lacey, A.A.: Thermal runaway in a non-local problem modeling Ohmic heating: part I: model derivation and some special cases. Eur. J. Appl. Math. 6, 127–144 (1995)

    MATH  Google Scholar 

  30. Lacey, A.A.: Thermal runaway in a non-local problem modelling Ohmic heating: part II: general proof of blow-up and asymptotics of runaway. Eur. J. Appl. Math. 6, 201–224 (1995)

    MATH  Google Scholar 

  31. Lacey, A.A., Tzanetis, D.E., Vlamos, P.M.: Behaviour of a non-local reactive convective problem modelling Ohmic heating of foods. Q. J. Mech. Appl. Math. 52, 623–644 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Latos, E.A., Tzanetis, D.E.: Existence and blow-up of solutions for a non-local filtration and porous medium problem. Proc. Edinb. Math. Soc. 53, 195–209 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Latos, E.A., Tzanetis, D.E.: Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source. Nonlinear Differ. Equ. Appl. 17, 137–151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lopez-Gomez, J.: On the structure and stability of the set of solutions of a non-local problem modelling Ohmic heating. J. Dyn. Differ. Equ. 10, 537–559 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  36. Please, C.P., Schwendeman, D.W., Hagan, P.S.: Ohmic heating of foods during aseptic processing. IMA J. Math. Bus. Ind. 2, 26–28 (1994)

    MATH  Google Scholar 

  37. Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States. Birkhäuser Advanced Texts. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  38. Skudder, P., Biss, S.: Aseptic processing of food products using Ohmic heating. Chem. Eng. 2, 26–28 (1987)

    Google Scholar 

  39. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, New York (1994)

    Book  MATH  Google Scholar 

  40. Stakgold, I.: Boundary Value Problems of Mathematical Physics, vol. I. The Macmillan Company, Collier-Macmillan, London (1970)

    MATH  Google Scholar 

  41. Stirling, R.: Ohmic heating - a new process for the food industry. Power Eng. J. 6, 365 (1987)

    Article  Google Scholar 

  42. Tzanetis, D.E.: Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating. Electron. J. Differ. Equ. 11, 1–26 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Tzanetis, D.E., Vlamos, P.M.: A nonlocal problem modelling Ohmic heating with variable thermal conductivity. Nonlinear Anal. RWA 2, 443–454 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zang, L., Fryer, P.J.: Models for the electrical heating of solid-liquid food mixtures. Chem. Eng. Sci. 48, 633–642 (1993)

    Article  Google Scholar 

  45. Zheng, G.-F.: On finite-time blow-up for a nonlocal parabolic problem arising from shear bands in metals. Proc. Amer. Math. Soc. 135, 1487–1494 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos I. Kavallaris .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kavallaris, N.I., Suzuki, T. (2018). Ohmic Heating Phenomena. In: Non-Local Partial Differential Equations for Engineering and Biology. Mathematics for Industry, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-67944-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67944-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67942-6

  • Online ISBN: 978-3-319-67944-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics