Advertisement

State Sum Models and Observables

  • Mauro Carfora
  • Annalisa Marzuoli
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 942)

Abstract

From a historical viewpoint the Ponzano–Regge asymptotic formula for the 6j symbol of the group SU(2) (Ponzano and Regge, Semiclassical limit of Racah coefficients. In: Bloch et al (eds) Spectroscopic and group theoretical methods in physics. North–Holland, Amsterdam, pp 1–58, 1968), together with Penrose’s original idea of combinatorial spacetime out of coupling of angular momenta –or spin networks – Penrose (Angular momentum: an approach to combinatorial space–time. In: Bastin (ed) Quantum theory and beyond. Cambridge University Press, 151–180, 1971), is the precursor of the discretized approaches to 3–dimensional Euclidean quantum gravity collectively referred to as ‘state sum models’ after the 1992 paper by Turaev and Viro (State sum invariants and quantum 6j symbols. Topology 31:865–902, 1992). The prominent role here is played by the colored tetrahedron encoding the tetrahedral symmetry of the 6j symbol – reminiscent of the Platonic solid shown in the reproduction of Fig. 6.1 – and recognized in the semiclassical limit as a geometric 3–simplex whose edge lengths are irreps labels from the representation ring of either SU(2) or its universal enveloping algebra \({\mathcal {U}}_q(sl(2))\) with deformation parameter q = root of unity.

References

  1. 1.
    Ambjørn, J., Carfora, M., Marzuoli, A.: The Geometry of Dynamical Triangulations. Lecture Notes in Physics Monographs, vol. 50. Springer, Berlin (1997)Google Scholar
  2. 2.
    Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum Geometry. Cambridge University Press, Cambridge (1997)Google Scholar
  3. 3.
    Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and asymptotic disentangling. J. Phys. Chem. A 113, 15106–15117 (2009)Google Scholar
  4. 4.
    Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Yu, L.: Semiclassical analysis of Wigner 3j-symbol. J. Phys. A Math. Theor. 40, 5637–5674 (2007)Google Scholar
  5. 5.
    Aquilanti, V., Bitencourt, A.P.C., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theor. Chem. Acc. 123, 237–247 (2009)Google Scholar
  6. 6.
    Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Poppe, S., Yu, L.: Asymptotics of the Wigner 6j symbol in a 4j model. Preprint (2010)Google Scholar
  7. 7.
    Arcioni, G., Carfora, M., Dappiaggi, C., Marzuoli, A.: The WZW model on random Regge triangulations. J. Geom. Phys. 52, 137–173 (2004)Google Scholar
  8. 8.
    Arcioni, G., Carfora, M., Marzuoli, A., O’ Loughin, M.: Implementing holographic projections in Ponzano–Regge gravity. Nucl. Phys. B 619, 690–708 (2001)Google Scholar
  9. 9.
    Askey, R.: Ortogonal Polynomials and Special Functions, Society for Industrial and Applied Mathematics. Philadelphia (1975); R. Koekoek, R.F. Swarttouw, The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its Q-Analogue. Technische Universiteit Delft, Delft (1998). http://aw.twi.tudelft.nl/~koekoek/askey/
  10. 10.
    Atiyah, M.F.: The Geometry and Physics of Knots. Cambridge University Press, Cambridge (1990)Google Scholar
  11. 11.
    Barrett, J.W., Crane, L.: Relativistic spin networks and quantum gravity. J. Math. Phys. 39, 3296–3302 (1998)Google Scholar
  12. 12.
    Beliakova, A., Durhuus, B.: Topological quantum field theory and invariants of graphs for quantum groups. Commun. Math. Phys. 167, 395–429 (1995)Google Scholar
  13. 13.
    Biedenharn, L.C., Lohe, M.A.: Quantum Group Symmetry and Q-tensor Algebra. World Scientific, Singapore (1995)Google Scholar
  14. 14.
    Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics: theory and applications. In: Rota G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, vol. 8. Addison–Wesley Publications Co., Reading (1981)Google Scholar
  15. 15.
    Biedenharn, L.C., Louck, J.D.: The Racah–Wigner algebra in quantum theory. In: Rota G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, vol. 9. Addison–Wesley Publications Co., Reading (1981)Google Scholar
  16. 16.
    Carbone, G.: Turaev–Viro invariant and 3nj symbols. J. Math. Phys. 41, 3068–3084 (2000)Google Scholar
  17. 17.
    Carbone, G., Carfora, M., Marzuoli, A.: Wigner symbols and combinatorial invariants of three–manifolds with boundary. Commun. Math. Phys. 212, 571–590 (2000)Google Scholar
  18. 18.
    Carbone, G., Carfora, M., Marzuoli, A.: Hierarchies of invariant spin models. Nucl. Phys. B 595, 654–688 (2001)Google Scholar
  19. 19.
    Carfora, M., Marzuoli, A., Rasetti, M.: Quantum tetrahedra. J. Phys. Chem. A 113, 15376–15383 (2009)Google Scholar
  20. 20.
    Carlip, S.: Quantum Gravity in 2+1 Dimensions. Cambridge University Press, Cambridge (1998)Google Scholar
  21. 21.
    Carter, J.S., Flath, D.E., Saito, M.: The Classical and Quantum 6j-Symbol. Princeton University Press, Princeton (1995)Google Scholar
  22. 22.
    Cattaneo, A.S., Cotta–Ramusino, P., Frölich, J., Martellini, M.: Topological BF theories in 3 and 4 dimensions. J. Math. Phys. 36, 6137–6160 (1995)Google Scholar
  23. 23.
    Crane, L., Kauffman, L.H., Yetter, D.N.: State sum invariants of 4 manifolds. arXiv:hep–th/9409167Google Scholar
  24. 24.
    De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785–806 (2000)Google Scholar
  25. 25.
    Durhuus, B., Jakobsen, H.P., Nest, R.: Topological quantum field theories from generalized 6j-symbols. Rev. Math. Phys. 5, 1–67 (1993)Google Scholar
  26. 26.
    Freed, D.S.: Remarks on Chern–Simons theory. Bull. Am. Math. Soc. 46, 221–254 (2009)Google Scholar
  27. 27.
    Freidel, L., Krasnov, K., Livine, E.R.: Holomorphic factorization for a quantum tetrahedron. Commun. Math. Phys. 297, 45–93 (2010)Google Scholar
  28. 28.
    Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. 12, 239–246 (1985)Google Scholar
  29. 29.
    Gomez C., Ruiz–Altaba M., Sierra, G.: Quantum Group in Two–Dimensional Physics. Cambridge University Press, Cambridge (1996)Google Scholar
  30. 30.
    Guadagnini, E.: The link invariants of the Chern–Simons field theory. W. de Gruyter, Berlin/Boston (1993)Google Scholar
  31. 31.
    Haggard, H.M., Littlejohn, R.G.: Asymptotics of the Wigner 9j symbol. Class. Quant. Grav. 27, 135010 (2010)Google Scholar
  32. 32.
    Ionicioiu, R., Williams, R.M.: Lens spaces and handlebodies in 3D quantum gravity. Class. Quant. Grav. 15, 3469–3477 (1998)Google Scholar
  33. 33.
    Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)Google Scholar
  34. 34.
    Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1985)Google Scholar
  35. 35.
    Karowski, M., Schrader, R.: A combinatorial approach to topological quantum field theories and invariants of graphs. Commun. Math. Phys. 167, 355–402 (1993)Google Scholar
  36. 36.
    Kauffman, L.: Knots and Physics. World Scientific, Singapore (2001)Google Scholar
  37. 37.
    Kauffman, L., Lins, S.: Temperley–Lieb recoupling theory and invariants of 3-Manifolds. Princeton University Press, Princeton (1994)Google Scholar
  38. 38.
    Kaul, R.,K., Govindarajan, T. R., P. Ramadevi, P.: Schwarz type topological quantum field theories. In: Encyclopedia of Mathematical Physics. Elsevier (2005) (eprint hep–th/0504100)Google Scholar
  39. 39.
    Kirby, R., Melvin, P.: The 3-manifold invariant of Witten and Reshetikhin–Turaev for \(sl(2, \mathbb {C})\). Invent. Math. 105, 437–545 (1991)Google Scholar
  40. 40.
    Kirillov, A.N., Reshetikhin, N.Y.: In: Kac, V.G. (ed.) Infinite Dimensional Lie Algebras and Groups. Advanced Series in Mathematical Physics, vol. 7, pp. 285–339. World Scientific, Singapore (1988)Google Scholar
  41. 41.
    Mizoguchi, S., Tada, T.: 3-dimensional gravity from the Turaev–Viro invariant. Phys. Rev. Lett. 68, 1795–1798 (1992)Google Scholar
  42. 42.
    Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin/New York (1991)Google Scholar
  43. 43.
    Neville, D.: A technique for solving recurrence relations approximately and its application to the 3-j and 6-J symbols. J. Math. Phys. 12, 2438–2453 (1971)Google Scholar
  44. 44.
    Nomura, M.: Relations for Clebsch–Gordan and Racah coefficients in su q(2) and Yang–Baxter equations. J. Math. Phys. 30, 2397–2405 (1989)Google Scholar
  45. 45.
    Ohtsuki T. (ed.): Problems on invariants of knots and 3–manifolds, RIMS geometry and topology monographs, vol. 4 (eprint arXiv: math.GT/0406190)Google Scholar
  46. 46.
    Ooguri, H.: Topological lattice models in four dimensions. Mod. Phys. Lett. A 7, 2799–2810 (1992)Google Scholar
  47. 47.
    Ooguri, H.: Schwinger–Dyson equation in three-dimensional simplicial quantum gravity. Prog. Theor. Phys. 89, 1–22 (1993)Google Scholar
  48. 48.
    Pachner, U.: Ein Henkel Theorem für geschlossene semilineare Mannigfaltigkeiten [A handle decomposition theorem for closed semilinear manifolds]. Result. Math. 12, 386–394 (1987)Google Scholar
  49. 49.
    Pachner, U.: Shelling of simplicial balls and P.L. manifolds with boundary. Discr. Math. 81, 37–47 (1990)Google Scholar
  50. 50.
    Pachner, U.: Homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Comb. 12, 129–145 (1991)Google Scholar
  51. 51.
    Penrose, R.: Angular momentum: an approach to combinatorial space–time. In: Bastin, T. (ed.) Quantum Theory and Beyond, pp. 151–180. Cambridge University Press, Cambridge (1971)Google Scholar
  52. 52.
    Ponzano, G., Regge, T.: Semiclassical limit of racah coefficients. In: Bloch F. et al. (eds.) Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58. North–Holland, Amsterdam (1968)Google Scholar
  53. 53.
    Ragni, M., Bitencourt, A.P.C., da S. Ferreira, C. Aquilanti, V., Anderson, R.W., Littlejohn, R.G.: Exact computation and asymptotic approximations of 6j symbols: illustration of their semiclassical limits. Int. J. Quant. Chem. 110, 731–742 (2009)Google Scholar
  54. 54.
    Regge, T.: Symmetry properties of Racah’s coefficients. Nuovo Cimento 11, 116–117 (1958)Google Scholar
  55. 55.
    Regge, T.: General relativity without coordinates. Nuovo Cimento 19, 558–571 (1961)Google Scholar
  56. 56.
    Regge, T., Williams, R.M.: Discrete structures in gravity. J. Math. Phys. 41, 3964–3984 (2000)Google Scholar
  57. 57.
    Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)Google Scholar
  58. 58.
    Roberts, J.D.: Skein theory and Turaev–Viro invariants. Topology 34, 771–787 (1995)Google Scholar
  59. 59.
    Roberts, J.D.: Classical 6j-symbols and the tetrahedron. Geom. Topol. 3, 21–66 (1999)Google Scholar
  60. 60.
    Rolfsen, D.: Knots and Links. Publish or Perish, Inc., Berkeley (1976)Google Scholar
  61. 61.
    Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise–Linear Topology. Springer, Berlin (1972)Google Scholar
  62. 62.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)Google Scholar
  63. 63.
    Schulten, K., Gordon, R.G.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)Google Scholar
  64. 64.
    Schulten, K., Gordon, R.G.: Semiclassical approximations to 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1971–1988 (1975)Google Scholar
  65. 65.
    Taylor, Y.U., Woodward, C.T.: 6j symbols for U q(sl 2) and non–Euclidean tetrahedra. Sel. Math. New Ser. 11, 539–571 (2005)Google Scholar
  66. 66.
    ’t Hooft, G.: The scattering matrix approach for the quantum black hole, an overview. Int. J. Mod. Phys. A11, 4623–4688 (1996)Google Scholar
  67. 67.
    Turaev, V.G.: Quantum invariants of links and 3-valent graphs in 3-manifolds. Publ. Math. IHES 77, 121–171 (1993)Google Scholar
  68. 68.
    Turaev, V.G.: Quantum Invariants of Knots and 3-manifolds. W. de Gruyter, Berlin (1994)Google Scholar
  69. 69.
    Turaev, V.G., Viro, O.Y.: State sum invariants and quantum 6j symbols. Topology 31, 865–902 (1992)Google Scholar
  70. 70.
    Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore/Philadelphia (1988)Google Scholar
  71. 71.
    Walker, K.: On witten’s 3-manifolds invariant. Preprint (1991). (An extended version dated 2001 is available on the web)Google Scholar
  72. 72.
    Williams, R.M., Tuckey, P.A.: Regge calculus: a bibliography and brief review. Class. Quant. Grav. 9, 1409–1422 (1992)Google Scholar
  73. 73.
    Witten, E.: (2+1)-dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 49–78 (1988/89)Google Scholar
  74. 74.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)Google Scholar
  75. 75.
    Yutsis, A.P., Levinson, I.B., Vanagas, V.V.: The Mathematical Apparatus of the Theory of Angular Momentum. Israel Program for Scientific Translations Ltd (1962)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mauro Carfora
    • 1
  • Annalisa Marzuoli
    • 2
  1. 1.Dipartimento di FisicaUniversità degli Studi di PaviaPaviaItaly
  2. 2.Dipartimento di MatematicaUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations