The Quantum Geometry of Polyhedral Surfaces: Non–linear σ Model and Ricci Flow

  • Mauro Carfora
  • Annalisa Marzuoli
Part of the Lecture Notes in Physics book series (LNP, volume 942)


In this chapter we discuss in great detail the connection between Non–Linear σ Model and Ricci Flow. In recent years, Ricci flow has been the point of departure and the motivating example for important developments in geometric analysis, most spectacularly for G. Perelman’s proof of Thurston’s geometrization program for three-manifolds and of the attendant Poincaré conjecture. For one of those strange circumstances not unusual in the history of Science, the Ricci flow, introduced in the early 1980s by Richard Hamilton, independently appeared on the scene also in Physics. Indeed, Daniel Friedan, studying the weak coupling limit of the renormalization group flow for non-linear sigma models, introduced what later on came to be known as the Hamilton–DeTurck version of the Ricci flow. This QFT avatar of the Ricci flow was largely ignored in geometry until G. Perelman acknowledged that in his groundbreaking analysis he was somewhat inspired by the role that the effective action plays in non–linear σ–model theory. This soon called attention to the fact that in QFT the Ricci flow is naturally embedded into a more general geometric flow, the renormalization group flow for non–linear σ models, which, even if mathematically ill-defined, provides an interpretation for the Ricci flow which is open to generalizations. Here we discuss this connection in great detail, pinpointing both the many mathematical as well as physical subtle points of the perturbative embedding of the Ricci flow in the renormalization group flow. The geometry of the dilaton fields is discussed in depth using Riemannian metric measure spaces and their role in connecting NLσM effective action to Perelman’s \(\mathcal {F}\) energy. We do not know of any other published account of these matter which is so detailed and informative.


  1. 1.
    Alvarez-Gaume, L., Freedman, D.Z., Mukhi, S.: The background field method and the ultraviolet structure of supersymmetric nonlinear sigma model. Ann. Phys. 134, 85–109 (1981)Google Scholar
  2. 2.
    Anderson, G., Chow, B.: A pinching estimate for solutions of the linearized Ricci flow system on 3–manifolds. Calc. Var. Partial Differ. Equ. 23, 1–12 (2005)Google Scholar
  3. 3.
    Aubin, T.: Métriques riemanniennes et courbure. J. Differ. Geom. 4(4), 383–519 (1970)Google Scholar
  4. 4.
    Avez, A.: Le Laplacien de Lichnerowicz sur les tenseurs. C. R. Acad. Sci. Paris. Ser. A Math. 284, 1219–1220 (1977)Google Scholar
  5. 5.
    Bakas, I.: Geometric flows and (some of) their physical applications. In: AvH Conference Advances in Physics and Astrophysics of the 21st Century, Varna, 6–11 Sept 2005. hep-th/0511057Google Scholar
  6. 6.
    Bakas, I.: Renormalization group equations and geometric flows. arXiv:hep-th/0702034Google Scholar
  7. 7.
    Bakas, I., Sourdis, C.: Dirichlet sigma models and mean curvature flow. JHEP 0706, 057 (2007). arXiv:0704.3985Google Scholar
  8. 8.
    Bourguignon, J.-P.: L’espace des structures riemanniennes d’une variété compacte: application á la courbure des produits de variétés: stratification par le groupe des isométries. Thesis–Paris VII (1974)Google Scholar
  9. 9.
    Bourguignon, J.-P.: Ricci curvature and Einstein metrics. In: Ferus, D., et al. (eds.) Global Differential Geometry and Global Analysis. Lecture Notes in Mathematics, vol. 838, pp. 42–63. Springer, Berlin (1981)Google Scholar
  10. 10.
    Bryant, R.L.: Gradient Kähler Ricci solitons. In: Géométrie différentielle, physique mathématique, mathématiques et société. I., Astérisque, vol. 321, pp. 51–97 (Spring, 2008). [math.DG/0407453]Google Scholar
  11. 11.
    Bryant, R.L.: Ricci flow solitons in dimension three with SO(3)-symmetries. Available at
  12. 12.
    Buser, P., Karcher, H.: Gromov’s almost flat manifolds. Asterisque, vol. 81. Societe Mathematique de France, Paris (1981)Google Scholar
  13. 13.
    Buzzanca, C.: The Laplacian of Lichnerowicz on tensors. Boll. Un. Mat. Ital. B 3(6), 531–541 (1984)Google Scholar
  14. 14.
    Cao, H.-D.: Existence of gradient Kähler–Ricci solitons. In: Elliptic and parabolic methods in geometry, pp. 1–16. A. K. Peters, Wellesley (1996)Google Scholar
  15. 15.
    Cao, H.-D.: Geometry of Ricci solitons. Chin. Ann. Math. 27B(2), 121–142 (2006)Google Scholar
  16. 16.
    Cappelli, A., Friedan, D., Latorre, J.I.: c-theorem and spectral representation. Nucl. Phys. B 352, 616–670 (1991)Google Scholar
  17. 17.
    Carfora, M.: The conjugate linearized Ricci flow on closed 3-manifolds. Ann. Scuola Normale Superiore di Pisa (Cl. Sci. (5)) VIII, 681–724 (2009). arXiv:0710.3342Google Scholar
  18. 18.
    Carfora, M.: Renormalization group and the Ricci flow. In: 150 Years of Riemann Hypothesis. Special Issue of Milan J. Math. 78, 319–353 (2010). arXiv:1001.3595Google Scholar
  19. 19.
    Carfora, M.: The Wasserstein geometry of non linear σ models and the Hamilton–Perelman Ricci flow. Rev. Math. Phys. 29, 1750001 (2017) [71 pages]. (an extended version is available at arXiv: 1405.0827)
  20. 20.
    Carfora, M., Marzuoli, A.: Model geometries in the space of Riemannian structures and Hamilton’s flow. Class. Quantum Grav. 5, 659–693 (1988)Google Scholar
  21. 21.
    Chang, S-Y.A., Gursky, M.J., Yang, P.: Conformal invariants associated to a measure. Proc. Natl. Acad. Sci. USA (PNAS) 103, 2535–2540 (2006)Google Scholar
  22. 22.
    Chow, B., Knopf, D.: The Ricci Flow: An Introduction. Mathematical Surveys and Monographs, vol. 110. American Mathematical Society, Providence (2004)Google Scholar
  23. 23.
    Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence (2007)Google Scholar
  24. 24.
    Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Ni, L.: The Ricci Flow: Techniques and Applications: Part I: Geometric Aspects. Mathematical Surveys and Monographs, vol. 135. American Mathematical Society, Providence (2007)Google Scholar
  25. 25.
    Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Ni, L.: The Ricci Flow: Techniques and Applications: PartIII: Geometric-Analytic Aspects. Mathematical Surveys and Monographs, vol. 163. American Mathematical Society, Providence (2010)Google Scholar
  26. 26.
    Cremaschi, L., Mantegazza, C.: Short-Time Existence of the Second Order Renormalization Group Flow in Dimension Three (2013). arXiv:1306.1721v1 [math.AP]Google Scholar
  27. 27.
    Derdzinski, A.: Compact Ricci solitons (2009, preprint)Google Scholar
  28. 28.
    DeTurck, D.: Deforming metrics in the direction of their Ricci tensor. J. Differ. Geom. 18, 157–162 (1983)Google Scholar
  29. 29.
    Douglas, M.R.: Spaces of Quantum Field Theories. Lectures at Erice (2009, unpublished)Google Scholar
  30. 30.
    Driver, B.K.: A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold. J. Funct. Anal. 110, 272–376 (1992)Google Scholar
  31. 31.
    Eells, J., Fuglede, B.: Harmonic Maps Between Riemannian Polyhedra. Cambridge Tracts in Mathematics, vol. 142. Cambridge University Press, Cambridge (2001)Google Scholar
  32. 32.
    Eminenti, M., La Nave, G., Mantegazza, C.: Ricci solitons: the equation point of view. Manuscr. Math. 127(3), 345–367 (2008)Google Scholar
  33. 33.
    Feldman, M., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)Google Scholar
  34. 34.
    Fradkin, E.S., Tseytlin, A.A.: Effective field theory from quantized strings. Phys. Lett. B 158, 316 (1985)Google Scholar
  35. 35.
    Fradkin, E.S., Tseytlin, A.A.: Quantum string theory effective action. Nucl. Phys. B 261, 1 (1985)Google Scholar
  36. 36.
    Friedan, D.: Nonlinear models in 2 + 𝜖 dimensions. Ph.D. thesis (Berkeley). LBL-11517, UMI-81-13038, Aug 1980, 212pp.Google Scholar
  37. 37.
    Friedan, D.: Nonlinear models in 2 + 𝜖 dimensions. Phys. Rev. Lett. 45, 1057 (1980)Google Scholar
  38. 38.
    Friedan, D.: Nonlinear models in 2 + 𝜖 dimensions. Ann. Phys. 163, 318–419 (1985)Google Scholar
  39. 39.
    Gawedzki, K.: Conformal field theory. In: Deligne, P., Etingof, P., Freed, D.D., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.) Quantum Fields and Strings: A Course for Mathematicians. Institute for Advanced Study, vol. 2. AMS (1999)Google Scholar
  40. 40.
    Gegenberg, J., Suneeta, V.: The fixed points of RG flow with a Tachyon. JHEP 0609, 045 (2006). arXiv:hep-th/0605230Google Scholar
  41. 41.
    Gigli, N., Mantegazza, C.: A flow tangent to the Ricci flow via heat kernels and mass transport (2012). arXiv:1208.5815v1Google Scholar
  42. 42.
    Gimre, K., Guenther, C., Isenberg, J.: Second-order renormalization group flow of three-dimensional homogeneous geometries (2012). arXiv:1205.6507v1 [math.DG]Google Scholar
  43. 43.
    Giveon, A., Halpern, M.B., Kiritsis, E.B., Obers, N.A.: Exact C-function and C-theorem on affine Virasoro space. Nucl. Phys. B357, 655–690 (1991)Google Scholar
  44. 44.
    Grigor’yan, A., Heat kernels on weighted manifolds and applications. In: The Ubiquitous Heat Kernel. Contemporary Mathematics, vol. 398, pp 93–191. American Mathematical Society, Providence (2006)Google Scholar
  45. 45.
    Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999)Google Scholar
  46. 46.
    Guenther, C., Oliynyk, T.A.: Renormalization group flow for nonlinear sigma models. Lett. Math. Phys. 84, 149–157 (2008). arXiv:0810.3954Google Scholar
  47. 47.
    Guenther, C., Isenberg, J., Knopf, D.: Linear stability of homogeneous Ricci solitons. arXiv:math.DG/0606793v4Google Scholar
  48. 48.
    Guenther, C., Isenberg, J., Knopf, D.: Stability of the Ricci flow at Ricci–flat metrics. Commun. Anal. Geom. 10, 741–777 (2002)Google Scholar
  49. 49.
    Günther, M.: On the perturbation problem associated to isometric embeddings of Riemannian manifolds. Ann. Glob. Anal. Geom. 7, 69–77 (1989)Google Scholar
  50. 50.
    Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255–306 (1982)Google Scholar
  51. 51.
    Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–261 (1988)Google Scholar
  52. 52.
    Hamilton, R.S.: The Formation of Singularities in the Ricci Flow. Surveys in Differential Geometry, vol. 2, pp. 7–136. International Press, Cambridge (1995)Google Scholar
  53. 53.
    Hamilton, R.S., Isenberg, J.: Quasi-convergence of Ricci flow for a class of metrics. Commun. Anal. Geom. 1, 543–559 (1993)Google Scholar
  54. 54.
    Hélein, F.: Régularité des applications faiblement harmoniques entre una surface et une variété riemanienne. C.R. Acad. Sci. Paris 312, 591–596 (1991)Google Scholar
  55. 55.
    Hélein, F., Wood, J.C.: Harmonic maps. In: Krupka, D., Saunders, D. (eds.) Handbook of Global Analysis. Elsevier, Amsterdam/Oxford (2007)Google Scholar
  56. 56.
    Honerkamp, J.: Chiral multiloops. Nucl. Phys. B36, 130–140 (1972)Google Scholar
  57. 57.
    Ivey, T.: Ricci solitons on compact three–manifolds. Diff. Geom. Appl. 3, 301–307 (1993)Google Scholar
  58. 58.
    Jost, J.: Riemannian Geometry and Geometric Analysis, 2nd edn. Springer, Berlin/Heidelberg (1998)Google Scholar
  59. 59.
    Kiritis, E.: String Theory in a Nutshell. Princeton University Press, Princeton (2007)Google Scholar
  60. 60.
    Kiritsis, E., Nitti, F., Pimenta, L.S.: Exotic RG Flows from Holography (2016). arXiv:1611.05493Google Scholar
  61. 61.
    Koiso, N.: On rotationally symmetric Hamilton’s equation for Kähler–Einstein metrics. In: Ochiai, T. (ed.) Recent Topics in Differential and Analytic Geometry. Advanced Studies in Pure Mathematics, vol. 18. Academic Press, Boston (1990)Google Scholar
  62. 62.
    Komargodski, Z., Schwimmer, A.: On renormalization group flows in four dimensions. J. High Energy Phys. 1112, 099 (2011). arXiv:1107.3987Google Scholar
  63. 63.
    Korevaar, N.J., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Commun. Anal. Geom. 1, 561–659 (1993)Google Scholar
  64. 64.
    Leandre, R.: Stochastic Wess-Zumino-Novikov-Witten model on the torus. J. Math. Phys. 44, 5530–5568 (2003)Google Scholar
  65. 65.
    Lott, J.: Renormalization group flow for general sigma models. Commun. Math. Phys. 107, 165–176 (1986)Google Scholar
  66. 66.
    Lott, J.: Optimal transport and Ricci curvature for metric-measure spaces. In: Cheeger, J., Grove, K. (eds.) Metric and Comparison Geometry. Surveys in Differential Geometry, vol. 11, pp. 229–257. International Press, Somerville (2007)Google Scholar
  67. 67.
    Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)Google Scholar
  68. 68.
    Morrey, C.B.: Multiple Integrals in the calculus of variations. Grundlehren der mathematischen Wissenschaften, vol. 130. Springer, New York (1966)Google Scholar
  69. 69.
    Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)Google Scholar
  70. 70.
    Müller, R.: Differential Harnack Inequalities and the Ricci Flow. Series of Lecture in Mathematics. European Mathematical Society, Zurich (2006)Google Scholar
  71. 71.
    Oliynyk, T., Suneeta, V., Woolgar, E.: A gradient flow for worldsheet nonlinear sigma models. Nucl. Phys. B739, 441–458 (2006). hep-th/0510239Google Scholar
  72. 72.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. math.DG/0211159Google Scholar
  73. 73.
    Perelman, G.: Ricci flow with surgery on three-manifolds. math.DG/0303109Google Scholar
  74. 74.
    Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. math.DG/0307245Google Scholar
  75. 75.
    Petersen, P., Wylie, W.: Rigidity of gradient Ricci solitons. Pac. Math. J. 241, 329–345 (2009)Google Scholar
  76. 76.
    Polyakov, A.M.: Interaction of Goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett. B59, 79 (1975)Google Scholar
  77. 77.
    Schoen, R., Uhlenbeck, K.: The Dirichlet problem for harmonic maps. J. Differ. Geom. 18, 253–268 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Schwartz, J.T.: Non Linear Functional Analysis. Gordon and Breach, New York (1969)Google Scholar
  79. 79.
    Sturm, K-T.: A curvature–dimension condition for metric measure spaces. C. R. Sci. Paris Ser. I 342, 197–200 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Tao, T.: Poincaré’s Legacies, Part II. American Mathematical Society, Providence (2009)CrossRefzbMATHGoogle Scholar
  81. 81.
    Taubes, C.H.: Constructions of measures and quantum field theories on mapping spaces. J. Differ. Geom. 70, 23–58 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Tseytlin, A.A.: Conformal anomaly in two-dimensional sigma model on curved background and strings. Phys. Lett. 178B, 34 (1986)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    Tseytlin, A.A.: Sigma model Weyl invariance conditions and string equations of motion. Nucl. Phys. B 294, 383 (1987)ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    Tseytlin, A.A.: On sigma model RG flow, “central charge” action and Perelman’s entropy. Phys. Rev. D75, 064024 (2007). arXiv:hep-th/0612296Google Scholar
  85. 85.
    von Renesse, M.-K., Sturm, K-T.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Weitsman, J.: Measures on Banach manifolds and supersymmetric quantum field theories. Commun. Math. Phys. 277, 101–125 (2008)ADSCrossRefzbMATHGoogle Scholar
  87. 87.
    Ye, R.: Ricci flow, Einstein metrics and space forms. Trans. Am. Math. Soc. 338, 871–896 (1993)CrossRefzbMATHGoogle Scholar
  88. 88.
    Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2-D field theory. JEPT Lett 43, 730 (1986)ADSMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mauro Carfora
    • 1
  • Annalisa Marzuoli
    • 2
  1. 1.Dipartimento di FisicaUniversità degli Studi di PaviaPaviaItaly
  2. 2.Dipartimento di MatematicaUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations