Skip to main content

Electromagnetic Interference and Discontinuity Effects of Interconnections on Big Data Performance of Integrated Circuits

  • Chapter
  • First Online:
Mobile Big Data

Abstract

An antenna-in-package solution has recently been the ultimate technology offering innovation and perhaps the most highly integrated radio miniaturization surface-mounted chipset device for short-range, high-speed, high-gain, and large-scale big data hyper-performance server platforms. Electromagnetic interference (EMI) arises as a result of discontinuity of the interconnections between the antenna and the integrated circuit (IC) chips, which limits their efficiency considerably, as it increases the mutual coupling and initiates and propagates surface waves, thus limiting the radiation efficiency in particular at the far-field. The backplanes, on which the IC boards containing data communication chips and processors are densely installed, are interconnected with high-speed integrated transceiver circuits using wire traces and connectors. As a result, transmission losses become considerable, in particular for backplanes operating at transfer speeds greater than 10 Gbps. In effect, the signal distortion becomes so significant that accurate data transmission without distortion is near impossible. Techniques to ameliorate the drawbacks of the side effects of parasitics are investigated in this chapter. Existing solutions to mitigate such effects are assessed to determine the extent of their efficacy. Alternative coupling techniques are examined. The effects of grounding, filtering, guard rings, shielding and decoupling are studied. The implication of process technology in eliminating EMI is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhari, R., Eleftheriades, G.V.: Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits. IEEE Trans. Microw. Theory Tech. 51(6), 1629–1639 (2003)

    Article  Google Scholar 

  2. Adhikari, P.: Understanding millimeter wave wireless communication. In: VP of Business Development for Network Solutions, pp. 1–6. Leoa Corporation, San Diego (2008). http://www.loeacom.com/pdf

  3. Ahmadi, M.R.N., Safieddin S. N., Zhu L.: On-chip antennas for 24, 60, and 77 GHz single package transceivers on low resistivity silicon substrate. In: Proceedings of IEEE Antenna Propagation Symposium. Honolulu, HI, 9–15 June 2007

    Google Scholar 

  4. Alexopoulos, N.G., Jackson, D.R.: Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Trans. Antennas Propagat. 32(8), 807–816 (1984)

    Article  Google Scholar 

  5. Andrews, J.G., Buzzi, S., Choi, W., et al.: What Will 5G Be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  6. Atzori, L., Lera, A., Morabito, G.: IoT: A Survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  7. Bauer, H., Ranade, P., Tandon, S.: Big data and the opportunities it creates for semiconductor players. https://www.scribd.com/document/283642630/Big-Data-and-the-Opportunities-It-Creates-for-Semiconductor-Players

  8. Char, K.: Internet of Things System Design with Integrated Wireless MCUs. Silicon Labs (2015). http://www.mouser.co.za/applications/internet-of-things-integrated-wireless-mcu/

  9. Charthad, J., Weber, M.J., Chang, T.C., et al.: A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data Link. IEEE J. Solid-State Circuits 50(8), 1741–1753 (2015)

    Article  Google Scholar 

  10. Choi, W., Pyo, C., Cho, Y.H., et al.: High gain and broadband microstrip patch antenna using a superstrate layer. In: IEEE Antennas and Propagation Society International Symposium, Columbus, OH, USA, 22–27 June 2003 (2003)

    Google Scholar 

  11. Clavijo, S., Diaz, R., McKinzie, W.: Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas. IEEE Trans. Antennas Propag. 51(10), 2678–2690 (2003)

    Article  Google Scholar 

  12. Derhacobian, N.: One chip to rule them all? The Internet of Things and the next great era of hardware (2016). https://techcrunch.com/2016/05/28/one-chip-to-rule-them-all-the-internet-of-things-and-the-next-great-era-of-hardware/

  13. Desclos, L.: V-band double slot antenna integration on LTCC substrate using thick film technology. Microw. Opt. Technol. Lett. 28(5), 354–357 (2001)

    Article  Google Scholar 

  14. Faiz, M.M., Wahid, P.F.: A high efficiency L-band microstrip antenna. In: IEEE International URSI Conference, Orlando, FL, USA, 11–16 July 1999

    Google Scholar 

  15. Gardner, D.S., Meindl, J.D., Saraswat, K.C.: Interconnection and electromigration scaling theory. IEEE Trans. Electron Devices 34(3), 633–643 (1987)

    Article  Google Scholar 

  16. George, A.G., Krusius, J.P., Granitz, R.F.: Packaging alternatives to large silicon chips: tiled silicon on MCM and PWB substrates. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 19(4), 699–708 (1996)

    Article  Google Scholar 

  17. Guo, X., Li, R., Kenneth, K.O.: Design guidelines for reducing the impact of metal interference structures on the performance of on-chip antennas. In: Proceedings of IEEE AP-S International Symposium USNC/URSI National Radio Science Meeting, Columbus, OH, June 2003

    Google Scholar 

  18. Gürel, C.S., Yazgan, E.: Bandwidth widening in an annular ring microstrip antenna with superstrate. In: IEEE Antennas and Propagation Society International Symposium, Newport Beach, CA, USA, 18–23 June 1995

    Google Scholar 

  19. Harun-ur Rashid, A.B.M., Watanabe, S., Kikkawa, T., et al.: Interference suppression of wireless interconnection in Si integrated antenna. In: Proceedings of the IEEE International Interconnect Technology Conference, San Francisco, CA, 5–5 June 2002

    Google Scholar 

  20. Hoivik, N., Liu, D., Jahnes, C.V., et al.: High-efficiency 60 GHz antenna fabricated using low-cost silicon micromachining techniques. In: Proceedings of IEEE Antennas Propagation Symposium, Honolulu, HI, 10–15 June 2007

    Google Scholar 

  21. Huang, K.-K., Wentzloff, D.D.: 60 GHz on-chip patch antenna integrated in a 0.13-µm CMOS technology. In: Proceedings of IEEE International Conference on Ultra-Wideband, 1–2 Sept 2010

    Google Scholar 

  22. Islam, M.T., Alam, M.S.: Design of high impedance electromagnetic surfaces for mutual coupling reduction in patch antenna array. Materials 6, 143–155 (2013)

    Article  Google Scholar 

  23. Johannsen, U.: Technologies for integrated millimeter-wave antennas Eindhoven: Technische Universiteit Eindhoven (2013). https://doi.org/10.6100/IR754833

  24. Kamgaing, T., Ramahi, O.M.: Development and application of physics-based compact models for high-impedance electromagnetic surfaces integrated in a power plane configuration. In: IEEE AP-S Symposium Digest, June 2003

    Google Scholar 

  25. Kim, Y., Noh, I., Noh, H., Park, J., Yang, K.: A low dark current planar-type InGaAs guard-ring PIN photodiode using an ALD-Al2O3 passivation for short-wave infrared imaging applications. Compound Semiconductor Week 2016 (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), pp.1–2 (2016) MoP-IPRM-027

    Google Scholar 

  26. Kenneth, K.O., Kim, K., Floyd, B.A., et al.: On-chip antennas in silicon ICs and their application. IEEE Trans. Electron. Devices 52(7), 1312–1323 (2005)

    Article  Google Scholar 

  27. Kim, H.-J., Park, J., Oh, K.-S., et al.: Near field magnetic induction MIMO communication using heterogeneous multipole loop antenna array for higher data rate transmission. IEEE Trans. Antennas Propag. 64(5), 1952–1962 (2016)

    Article  Google Scholar 

  28. Lee, Y.C., Chang, W., Park, C.S.: Monolithic LTCC SiP transmitter for 60 GHz wireless communication terminals. In: IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, 12–17 June 2005

    Google Scholar 

  29. Liu, Y., He, J., Guo, M., et al.: An Overview of Big Data Industry in China. China Commun. 11(12), 1–10 (2014)

    Article  Google Scholar 

  30. Liu, D., Gaucher, B.: Design consideration for millimetre wave antennas within a chip package. In: Proceedings of IEEE International Workshop Antenna Technology, Xiamen, China, 21–23 Apr 2007

    Google Scholar 

  31. Long, J., Montalvo, T.: Wireless receivers for consumer applications. In: Proceedings of IEEE International Conference on Solid-State Circuits, Digest of Technical Papers, pp. 424–425, Philadelphia, 10–10 Feb 2005

    Google Scholar 

  32. Ma, K.-P., Kim, J., Yang, F.-R., et al.: Leakage suppression in stripline circuits using a 2-D photonic bandgap lattice. In: IEEE MTT-S International Microwave Symposium Digest, Anaheim Convention Center. Anaheim, California, June 1999

    Google Scholar 

  33. Massoud, Y., Majors, S., Kawa, J., et al.: Managing on-chip inductive effects. IEEE Trans. Very Large Scale Integr. VLSI Syst. 10(6), 789–798 (2002)

    Article  Google Scholar 

  34. Ngu, A.H.H., Gutierrez, M., Metsis, V., Nepal, S., Sheng, M.Z.: IoT middleware: a survey on issues and enabling technologies. IEEE Internet of Things J. PP(99):1–1 (2017)

    Google Scholar 

  35. Noh, I., Noh, H., Kim, Y., Lee, K., Yang, K.: A novel deep guard-ring InGaAs PIN photodiode structure reducing a crosstalk in SWIR imaging detection. 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), pp. 1–2 (2016)

    Google Scholar 

  36. Ohata, K., Maruhashi, K., Ito, M., et al.: Wireless 1.25 Gb/s transceiver module at 60 GHz band. In: Proceedings of IEEE Solid-State Circuits Conference, 7–7 Feb 2002

    Google Scholar 

  37. Park, J.B., Lu, A.C.W., Chua, K.M., et al.: Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP applications. IEEE Microw. Wirel. Compon. Lett. 16(9):481–483 (2006)

    Google Scholar 

  38. Pfeiffer, U., Grzyp, J., Liu, D., et al.: A chip-scale packaging technology for 60-GHz wireless chipsets. IEEE Trans. Microw. Theory Tech. 54(8), 3387–3397 (2006)

    Article  Google Scholar 

  39. Pfeiffer, U., Grzyp, J., Liu, D., et al.: A 60-GHz radio chipset fully-integrated in a low-cost packaging technology. In: Proceedings of 56th Electronic Components Technology Conference, San Diego, CA, 2 June 2006

    Google Scholar 

  40. Raman, S., Chang, T., Dohrman, C., et al.: The DARPA COSMOS program: the convergence of InP and silicon CMOS technologies for high-performance mixed-signal. In: Proceedings of International Conference Indium Phosphide Related Materials (IPRM), Kagawa, Japan, 1–4 June 2010

    Google Scholar 

  41. Rogers, S.D.: Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes. IEEE Trans. Microw. Theory Tech. 53(8), 2495–2505 (2005)

    Article  Google Scholar 

  42. Saiz, N., Dolats, N., Arbabian, A.: A 135 GHz SiGe transmitter with a dielectric rod antenna-in-package for high EIRP/channel arrays. In: Proceedings of the IEEE Custom Integrated Circuits Conference, San Francisco, California, 15–17 Sept 2014

    Google Scholar 

  43. Sarawat, K.C., Mohammadi, F.: Effect of scaling of interconnections on the time delay of VLSI circuits. IEEE Trans. Electron Dev. 17(2), 275–280 (1982)

    Google Scholar 

  44. Seki, T., Nishikawa, K., Toyoda, I., et al.: Millimeter wave high-efficiency multilayer parasitic microstrip antenna array for system-on-package. NTT Tech. Rev. 3(9), 33–40 (2005)

    Google Scholar 

  45. Shahparnia, S., Ramahi, O.M.: Miniaturized electromagnetic bandgap structures for broadband switching noise suppression in PCBs. Electron. Lett. 41(9), 519–520 (2005)

    Article  Google Scholar 

  46. Shen, M., Mikkelsen, J.H., Zhang, K., et al.: Modeling and design guidelines for P + guard rings in lightly doped CMOS substrates. IEEE Trans. Electron Devices 60(19), 2854–2861 (2013)

    Article  Google Scholar 

  47. Sievenpiper, D., Zhang, L., Broas, R.F.J., Alexopolous, N.G., Yablonovitch, E.: High-impedance electromagnetic surfaces with forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), pp. 2059–2074 (1999)

    Google Scholar 

  48. Sievenpiper, D., Yablonovitch, E.: Circuit and method for eliminating surface currents on metals. U.S. Patent 60/079953, 30 Mar 1998

    Google Scholar 

  49. Tang, M., Lu, J.-G., Mao, J., et al.: A systematic EM-circuit method for EMI analysis of coupled interconnects on dispersive dielectrics. IEEE Trans. Microw. Theory Tech. 61(1), 1–13 (2013)

    Article  Google Scholar 

  50. Tang, H.K.: EMI-induced failures in microprocessor-based Counting. Microprocess. Microsyst. 17(14), 248–252 (1993)

    Article  Google Scholar 

  51. Tsai, HW., Ker, MD.: Active guard ring to improve latch-up immunity. IEEE Trans. Electron Devices. 61(12) (2014)

    Google Scholar 

  52. Tsutsumi, Y., Nishio, M., Sekine, S., et al.: A triangular loop antenna mounted adjacent to a lossy Si substrate for millimeter-wave wireless PAN. In: Proceedings of IEEE Antenna Propagation Symposium, Honolulu, HI, 10–15 June 2007

    Google Scholar 

  53. Wheeler, H.A.: Fundamental limitations of small antennas. Proc. IRE 35(12):1479–1484 (1947)

    Google Scholar 

  54. Xu, J., Wang, S.: Investigating a guard trace ring to suppress the crosstalk due to a clock trace on a power electronics DSP control board. IEEE Trans. EM Compat. 57(3), 546–554 (2015)

    MathSciNet  Google Scholar 

  55. Yoon, H., Kim, K., O, K.K.: Interference effects on integrated dipole antennas by a metal cover for an integrated circuit package. In: Proceedings of IEEE AP-S International Symposium USNC/URSI National Radio Science Meeting, Salt Lake City, UT, July 2000

    Google Scholar 

  56. Yoshikawa, T., Hirata, T., Ebuchi, T., et al.: An over-1-Gb/s transceiver core for integration into large system-on-chips for consumer electronics. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(9), 1187–1198 (2008)

    Article  Google Scholar 

  57. You, P.-L., Huang, T.-H.: A switched inductor topology using a switchable artificial grounded metal guard ring for wide-FTR MMW VCO applications. IEEE Trans. Electron Devices 60(2), 759–766 (2013)

    Article  Google Scholar 

  58. Zhang, Y.P.: Antenna-in-package technology for modern radio systems. In: IEEE International Workshop on Antenna Technology, Small Antennas and Novel Metamaterials, Chiba, Japan, Mar 2008

    Google Scholar 

  59. Zhang, Y.P., Duixian Liu.: Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications. IEEE Trans. Antennas Propag. 57(10), 2830–2841 (2009)

    Google Scholar 

  60. Zhang, Y.P., Sun, M., Chua, K.M., et al.: Antenna-in-package in LTCC for 60-GHz radio. In: Proceedings of IEEE International Workshop Antenna Technology, Cambridge, U.K., pp. 279–282, 21–23 Mar 2007

    Google Scholar 

  61. Zhang, Y.P., Sun, M., Chua, K.M., et al.: Integration of slot antenna in LTCC package for 60 GHz radios. Electron. Lett. 44(5), 330–331 (2008)

    Article  Google Scholar 

  62. Zhang, Y.P., Sun, M., Chua, K.M., et al.: Antenna-in-package design for wirebond interconnection to highly integrated 60-GHz radios. IEEE Trans. Antennas Propag. 57(10), 2842–2852 (2009)

    Article  Google Scholar 

  63. Zhang, L., EP, Li., XP, Yu.: Frequency-response-oriented design and optimization of N+ Diffusion Guard Ring in Lightly Doped CMOS Substrate. IEEE Trans. Electromagn. Compat. 59(2) (2017)

    Google Scholar 

  64. Zwick, T., Liu, D., Gaucher, B.: Broadband planar superstrate antenna for integrated millimeter-wave transceivers. IEEE Trans. Antennas Propag. 54(10), 270–2796 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyi Stephen Olokede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olokede, S.S., Paul, B.S. (2018). Electromagnetic Interference and Discontinuity Effects of Interconnections on Big Data Performance of Integrated Circuits. In: Skourletopoulos, G., Mastorakis, G., Mavromoustakis, C., Dobre, C., Pallis, E. (eds) Mobile Big Data. Lecture Notes on Data Engineering and Communications Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-67925-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67925-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67924-2

  • Online ISBN: 978-3-319-67925-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics