Building Optoelectronic Heterostructures with Langmuir-Blodgett Deposition

  • Jonathan RobertsEmail author
Part of the Springer Theses book series (Springer Theses)


The flexibility of the Langmuir-Blodgett technique for the deposition of unconventional materials has already been highlighted in the previous chapter. This ability, coupled with the ease of depositing such materials onto a range of substrates and its long-range order, results in the outstanding ability to design and fabricate novel heterostructures for optoelectronic device applications. In this chapter, the use of this method for the fabrication of complex heterostructures comprising of semiconducting colloidal quantum dots (CQDs) sandwiched between graphene sheets, is shown for the first time.


Colloidal Quantum Dots (CQDs) Graphene Sheets Langmuir-Blodgett Technique Deposited Nanoparticle Films NP Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z. Alfassi et al., Photochemistry of colloidal metal sulfides. 3. Photoelectron emission from cadmium sulfide and cadmium sulfide-zinc sulfide cocolloids. J. Phys. Chem. 86, 24 (1982)CrossRefGoogle Scholar
  2. 2.
    A.L. Efros et al., Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 7 (1982)Google Scholar
  3. 3.
    L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Yin et al., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    D.V. Talapin et al., Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 10 (2007)Google Scholar
  6. 6.
    S. Doose, Optical amplification from single excitons in colloidal quantum dots. Small 3, 1856 (2007)CrossRefGoogle Scholar
  7. 7.
    D. Schooss et al., Quantum-dot quantum well CdS/HgS/CdS: theory and experiment. Phys. Rev. B. 49, 17072 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Pietryga et al., Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 130, 14 (2008)CrossRefGoogle Scholar
  9. 9.
    K.L. Janssens et al., Single and vertically coupled type-II quantum dots in a perpendicular magnetic field: exciton ground-state properties. Phys. Rev. B. 66, 075314 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    V.I. Klimov et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 5490 (2000)CrossRefGoogle Scholar
  11. 11.
    S.T. Selvan et al., Synthesis of tunable, highly luminescent QD-glasses through Sol-Gel processing. Adv. Mater. 13, 985 (2001)CrossRefGoogle Scholar
  12. 12.
    C.B. Murray et al., Synthesis and characterisation of nearly monodisperse CdE (E = sulfur, selenium, tellerium) semiconductor crystals. J. Am. Chem. Soc. 115, 19 (1993)Google Scholar
  13. 13.
    M.A. Hines et al., Synthesis and characterisation of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 2 (1996)CrossRefGoogle Scholar
  14. 14.
    L. Qu et al., Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124, 9 (2002)CrossRefGoogle Scholar
  15. 15.
    T. Pellegrino et al., Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 4 (2004)CrossRefGoogle Scholar
  16. 16.
    B. Dubertret et al., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 5599 (2002)CrossRefGoogle Scholar
  17. 17.
    W.C.W. Chan et al., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 5385 (1998)CrossRefGoogle Scholar
  18. 18.
    P. Mulvaney et al., Silica encapsulation of quantum dots and metal clusters. J. Mater. Chem. 10, 1259 (2000)CrossRefGoogle Scholar
  19. 19.
    C. Graf et al., Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18, 2 (2002)CrossRefGoogle Scholar
  20. 20.
    C. Lu et al., Electronic transport in nanoparticle monolayers sandwiched between graphene electrodes. Nanoscale 6, 14158 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    M. Acebrón et al., Protective ligand shells for luminescent SiO2-coated alloyed semiconductor nanocrystals. ACS Appl. Mater. Interfaces 7, 6935 (2015)CrossRefGoogle Scholar
  22. 22.
    G. Mao et al., Oleic acid disorders stratum corneum lipids in Langmuir monolayers. Langmuir 29, 4857 (2013)CrossRefGoogle Scholar
  23. 23.
    X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 5932 (2009)Google Scholar
  24. 24.
    X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labelling. Nano Lett. 9, 12 (2009)CrossRefGoogle Scholar
  25. 25.
    S.M. Kim et al., The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24, 365602 (2013)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    V. Aleksandrovic et al., Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. ACS Nano 2, 6 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Chen et al., Layer-by-layer assembly of vertically conducting graphene devices. Nat. Commun. 4, 1921 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Liu et al., Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. Nat. Commun. 5, 5461 (2014)CrossRefGoogle Scholar
  30. 30.
    M.J. Madito et al., Raman analysis of bilayer graphene film prepared on commercial Cu (0.5 at % Ni) foil. J. Raman Spectrosc. 47, 5 (2015)Google Scholar
  31. 31.
    S. Chen et al., Synthesis and characterisation of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett. 11, 3519 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    E.M. Samsonova et al., Fluorescence quenching mechanism for water-dispersible Nd3+: KYF4 nanoparticles synthesized by microwave-hydrothermal technique. J. Lumin. 169, 722 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Skardžiūtė et al., Optical study of the formation of pyrrolo[2,3-d]pyrimidine-based fluorescent nanoaggregates. Tetrahedron 69, 9566 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations