Skip to main content

Building Optoelectronic Heterostructures with Langmuir-Blodgett Deposition

  • Chapter
  • First Online:
Using Imperfect Semiconductor Systems for Unique Identification

Part of the book series: Springer Theses ((Springer Theses))

  • 350 Accesses

Abstract

The flexibility of the Langmuir-Blodgett technique for the deposition of unconventional materials has already been highlighted in the previous chapter. This ability, coupled with the ease of depositing such materials onto a range of substrates and its long-range order, results in the outstanding ability to design and fabricate novel heterostructures for optoelectronic device applications. In this chapter, the use of this method for the fabrication of complex heterostructures comprising of semiconducting colloidal quantum dots (CQDs) sandwiched between graphene sheets, is shown for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Z. Alfassi et al., Photochemistry of colloidal metal sulfides. 3. Photoelectron emission from cadmium sulfide and cadmium sulfide-zinc sulfide cocolloids. J. Phys. Chem. 86, 24 (1982)

    Article  Google Scholar 

  2. A.L. Efros et al., Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 7 (1982)

    Google Scholar 

  3. L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  4. Y. Yin et al., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664 (2005)

    Article  ADS  Google Scholar 

  5. D.V. Talapin et al., Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 10 (2007)

    Google Scholar 

  6. S. Doose, Optical amplification from single excitons in colloidal quantum dots. Small 3, 1856 (2007)

    Article  Google Scholar 

  7. D. Schooss et al., Quantum-dot quantum well CdS/HgS/CdS: theory and experiment. Phys. Rev. B. 49, 17072 (1994)

    Article  ADS  Google Scholar 

  8. J.M. Pietryga et al., Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 130, 14 (2008)

    Article  Google Scholar 

  9. K.L. Janssens et al., Single and vertically coupled type-II quantum dots in a perpendicular magnetic field: exciton ground-state properties. Phys. Rev. B. 66, 075314 (2002)

    Article  ADS  Google Scholar 

  10. V.I. Klimov et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 5490 (2000)

    Article  Google Scholar 

  11. S.T. Selvan et al., Synthesis of tunable, highly luminescent QD-glasses through Sol-Gel processing. Adv. Mater. 13, 985 (2001)

    Article  Google Scholar 

  12. C.B. Murray et al., Synthesis and characterisation of nearly monodisperse CdE (E = sulfur, selenium, tellerium) semiconductor crystals. J. Am. Chem. Soc. 115, 19 (1993)

    Google Scholar 

  13. M.A. Hines et al., Synthesis and characterisation of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 2 (1996)

    Article  Google Scholar 

  14. L. Qu et al., Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124, 9 (2002)

    Article  Google Scholar 

  15. T. Pellegrino et al., Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 4 (2004)

    Article  Google Scholar 

  16. B. Dubertret et al., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 5599 (2002)

    Article  Google Scholar 

  17. W.C.W. Chan et al., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 5385 (1998)

    Article  Google Scholar 

  18. P. Mulvaney et al., Silica encapsulation of quantum dots and metal clusters. J. Mater. Chem. 10, 1259 (2000)

    Article  Google Scholar 

  19. C. Graf et al., Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18, 2 (2002)

    Article  Google Scholar 

  20. C. Lu et al., Electronic transport in nanoparticle monolayers sandwiched between graphene electrodes. Nanoscale 6, 14158 (2014)

    Article  ADS  Google Scholar 

  21. M. Acebrón et al., Protective ligand shells for luminescent SiO2-coated alloyed semiconductor nanocrystals. ACS Appl. Mater. Interfaces 7, 6935 (2015)

    Article  Google Scholar 

  22. G. Mao et al., Oleic acid disorders stratum corneum lipids in Langmuir monolayers. Langmuir 29, 4857 (2013)

    Article  Google Scholar 

  23. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 5932 (2009)

    Google Scholar 

  24. X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labelling. Nano Lett. 9, 12 (2009)

    Article  Google Scholar 

  25. S.M. Kim et al., The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24, 365602 (2013)

    Article  Google Scholar 

  26. www.microchem.com

  27. V. Aleksandrovic et al., Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. ACS Nano 2, 6 (2008)

    Article  Google Scholar 

  28. J. Chen et al., Layer-by-layer assembly of vertically conducting graphene devices. Nat. Commun. 4, 1921 (2013)

    Article  Google Scholar 

  29. Y. Liu et al., Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. Nat. Commun. 5, 5461 (2014)

    Article  Google Scholar 

  30. M.J. Madito et al., Raman analysis of bilayer graphene film prepared on commercial Cu (0.5 at % Ni) foil. J. Raman Spectrosc. 47, 5 (2015)

    Google Scholar 

  31. S. Chen et al., Synthesis and characterisation of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett. 11, 3519 (2011)

    Article  ADS  Google Scholar 

  32. E.M. Samsonova et al., Fluorescence quenching mechanism for water-dispersible Nd3+: KYF4 nanoparticles synthesized by microwave-hydrothermal technique. J. Lumin. 169, 722 (2016)

    Article  Google Scholar 

  33. L. Skardžiūtė et al., Optical study of the formation of pyrrolo[2,3-d]pyrimidine-based fluorescent nanoaggregates. Tetrahedron 69, 9566 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Roberts .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roberts, J. (2017). Building Optoelectronic Heterostructures with Langmuir-Blodgett Deposition. In: Using Imperfect Semiconductor Systems for Unique Identification. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67891-7_6

Download citation

Publish with us

Policies and ethics