Advertisement

Langmuir-Blodgett Deposition of 2D Materials for Unique Identification

  • Jonathan RobertsEmail author
Chapter
  • 304 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

There are many instances in the field of security where optically identifiable tags are used, examples of these include holograms, special inks/prints and conventional anti-tamper taggants. Unfortunately, there are a range of problems with these existing systems, none more so than their ease of clonability and lack of individuality. Thus, it is of great societal and technological significance to develop an optically addressable analogue of an UNO/PUF-like device that can overcome these problems by relying on quantum confinement and thus, the local atomic environment of the system. In this chapter, the possibility of this is suggested by using two-dimensional materials known as transition metal dichalcogenides (TMDs), which contain a direct band-gap in the visible range and therefore emit light that could be detected efficiently by a standard silicon CCD.

Bibliography

  1. 1.
    K. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 5696 (2004)CrossRefGoogle Scholar
  2. 2.
    K.I. Bolotin et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 9 (2008)CrossRefGoogle Scholar
  3. 3.
    J. Lee et al., Estimation of Young’s modulus of graphene by Raman Spectroscopy. Nano Lett. 12, 9 (2012)Google Scholar
  4. 4.
    M. Sprickle et al., First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Chen et al., Graphene nano-ribbon electronics. Physica E 40, 2 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Bacon et al., Graphene Quantum Dots. Part. Part. Syst. Charact. 31, 4 (2013)Google Scholar
  7. 7.
    K.F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    H.R. Gutiérrez et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 8 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Kang et al., A unified understanding of the thickness-dependent bandgap transition in hexagonal two-dimensional semiconductors. J. Phys. Chem. 7, 597 (2016)Google Scholar
  10. 10.
    Poljak et al., Influence of edge defects, vacancies, and potential fluctuations on transport properties of extremely scaled graphene nanoribbons. IEEE Trans. Electron Devices 59, 12 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Usachov et al., The chemistry of imperfections in N-graphene. Nano Lett. 14, 9 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Ji et al., Influence of edge imperfections on the transport behaviour of graphene nanomeshes. Nanoscale 5, 2527 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    A. Fasolino et al., Intrinsic ripples in graphene. Nat. Mater. 6, 858 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M. Koperrski et al., Single photon emitters in exfoliated WSe2 structures. Nat. Nano. 10, 503 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Castellanos-Gomez, Why all the fuss about semiconductors? Nat. Photonics 10, 202 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    P. Blake et al., Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    P. Tonndorf et al., Photoluminescence emission and Raman response of monolayer MoS2, MoSe2 and WSe2. Opt. Express 21, 4 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Tongay et al., Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons. Sci. Rep. 3, 2657 (2013)CrossRefGoogle Scholar
  19. 19.
    X.H. Wang et al., Photoluminescence and Raman mapping characterisation of WS2 monolayers prepared using top-down and bottom-up methods. J. Mater. Chem. C 3, 2589 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Wei et al., Large range modification of exciton species in monolayer WS2. Appl. Opt. 55, 23 (2016)Google Scholar
  21. 21.
    M.S. Kim et al., Photoluminescence wavelength variation of monolayer MoS2 by oxygen plasma treatment. Thin Solid Films 590, 318 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    H.F. Lie et al., CVD growth of MoS2-based two-dimensional materials. Chem. Vap. Deposition 21, 241 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Kang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Gong et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    V. Nicolosi et al., Liquid exfoliation of layered materials. Science 340, 1226419 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Backes et al., Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 10, 1589 (2016)CrossRefGoogle Scholar
  27. 27.
    F. Bonaccorso et al., Production and processing of graphene and 2D crystals. Mater. Today 15, 12 (2012)CrossRefGoogle Scholar
  28. 28.
    L.J. Cote et al., Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043 (2009)CrossRefGoogle Scholar
  29. 29.
    X. Li et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3, 538 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H. Tachibana et al., Highly conductive inorganic-organic hybrid Langmuir-Blodgett films based on MoS2. Chem. Mater. 12, 854 (2000)CrossRefGoogle Scholar
  31. 31.
    Y. Taguchi et al., Fabrication of hybrid layered films of MoS2 and an amphiphilic ammonium cation using the Langmuir-Blodgett technique. Langmuir 14, 6550 (1998)CrossRefGoogle Scholar
  32. 32.
    W.M.R. Divigalpitiya et al., Spread films of single molecular transition-metal sulphides. Appl. Surface Sci. 48, 572 (1990)ADSGoogle Scholar
  33. 33.
    H. Nie et al., High-yield spreading of water-miscible solvents on water for Langmuir-Blodgett assembly. J. Am. Chem. Soc. 137, 10683 (2015)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    S.S. Grønborg et al., Synthesis of epitaxial single-layer MoS2 on Au(111). Langmuir 31, 9700 (2015)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    P.K. Chow et al., Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9, 3 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Li et al., Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 11 (2013)CrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
  42. 42.
    N. Scheuschner et al., Photoluminescence of freestanding single- and few-layer MoS2. Phys. Rev. B 89, 125406 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    R. Kappera et al., Phase-engineered Low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    G. Eda et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 12 (2011)CrossRefGoogle Scholar
  45. 45.
    Y. Lee et al., Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale 7, 11909 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    C. Lee et al., Anomalous lattice vibrations of single- and few-layered MoS2. ACS Nano 4, 5 (2010)CrossRefGoogle Scholar
  47. 47.
    Y. Saito et al., Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144 (2016)CrossRefGoogle Scholar
  48. 48.
    B.J. Robinson et al., Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate. 2D Mater. 2, 015005 (2015)Google Scholar
  49. 49.
    N.R. Pradhan et al., Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 102, 123105 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    H.S. Lee et al., MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 7 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    G.W. Mudd et al., Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 25, 40 (2013)CrossRefGoogle Scholar
  52. 52.
    S.M. Baschenko, L.S. Marchenko, On Raman spectra of water, its structure and dependence on temperature. Semicond. Phys. Quantum Electron. Optoelectron. 14, 1 (2011)CrossRefGoogle Scholar
  53. 53.
    M. Buscema et al., The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 7, 4 (2014)CrossRefGoogle Scholar
  54. 54.
    M. Amani et al., Near-unity photoluminescence quantum yield in MoS2. Science 350, 6264 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations