Advertisement

Unique Identification with Resonant Tunneling Diodes

  • Jonathan RobertsEmail author
Chapter
  • 230 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Electronic devices have become extremely prominent in everyday life, and it is now commonplace for them to control critical tasks, such as managing financial transactions. Therefore, it is of key importance that these devices can be securely identified to prevent illegitimate parties mimicking themselves as genuine, and gaining access to sensitive information. The popular methods of identification currently in use rely on the end user providing some information about themselves, such as a fingerprint or a password, but these authentication methods are known to be extremely vulnerable. Identities can also be provided by systems that exploit physical disorder, but there is a growing need for the security to be as robust as physically possible. Resonant tunneling diodes (RTDs), can provide such an uncomplicated measurement of identity, corresponding to the straightforward measurement of the macroscopic current that passes through the device.

Bibliography

  1. 1.
    M. Cahay, J.P. Leburton, D.J. Lockwood, S. Bandyopadhyay, Quantum Confinement: Nanoscale Materials, Devices, and Systems (The Electrochemical Society, New Jersey, 1997)Google Scholar
  2. 2.
    R. Nötzel et al., Uniform quantum-dot arrays formed by natural self faceting on patterned substrates. Nature 392, 56 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    G. Juska et al., Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 7, 527 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A. Mohan et al., Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nat. Photonics 4, 302 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Ramsteiner et al., Influence of composition fluctuations in Al(Ga)As barriers on the exciton localization in thin GaAs quantum wells. Phys. Rev. B. 55, 5239 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    M. Tsuchiya, H. Sakaki, Dependence of resonant tunneling current on well widths in AlAs/GaAs/AlAs double barrier diode structures. Appl. Phys. Lett. 49, 88 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    D. Gammon et al., Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 16 (1996)CrossRefGoogle Scholar
  8. 8.
    R.J. Young et al., Inversion of exciton level splitting in quantum dots. Phys. Rev. B. 72, 113305 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A. Gruber, Scanning confocal optical microscopy and magnetic resonance on single defect centres. Science 276, 5321 (1997)CrossRefGoogle Scholar
  10. 10.
    E.F. Schubert, Doping in III–V Semiconductors (Cambridge University Press, 1993)Google Scholar
  11. 11.
    W. Pötz, Z.Q. Li, Imperfections and resonant tunneling in quantum-well heterostructures. Solid State Electron. 32, 12 (1989)Google Scholar
  12. 12.
    J.J. Pla et al., A single-atom electron spin qubit in silicon. Nature 489, 541 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    W. Nakwaski, Thermal conductivity of binary, ternary, and quaternary III–V compounds. J. Appl. Phys. 64, 159 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    D.A. Drabold, S. Estreicher, Theory of Defects in Semiconductors (Springer, Berlin, 2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    E.P. Smakman et al., GaSB/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 100, 142116 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    L.G. Wang et al., Size, shape, and stability of InAs quantum dots on the GaAs(001) Substrate. Phys. Rev. B. 62, 1897 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    N.J. Orfield et al., Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence. ACS Nano 9, 1 (2015)CrossRefGoogle Scholar
  18. 18.
    K.N. Kwok, Complete Guide to Semiconductor Devices (Wiley, 2010)Google Scholar
  19. 19.
    V.J. Goldman et al., Observation of intrinsic bistability in resoannt tunneling structures. Phys. Rev. Lett. 58, 1256 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    T.C.L.G. Sollner, Comment on ‘Observation of intrinsic bistability in resoannt tunneling structures’. Phys. Rev. Lett. 59, 1622 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    P. Zhao et al., Simulation of resonant tunneling structures: origin of the I–V hysteresis and plateau-like structure. J. Appl. Phys. 87, 1337 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    M.A.M. Zawawi et al., Fabrication of sub-micrometer InGaAs/AlAs resonant tunneling diode using a tri-layer soft reflow technique with excellent scalability. IEEE Trans. Electron Devices 61, 2338–2342 (2014)CrossRefGoogle Scholar
  23. 23.
    V.A. Wilkinson et al., Tunnel devices are not yet manufacturable. Semicond. Sci. Technol. 12, 91–99 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    M.J. Kelly, New statistical analysis of tunnel diode barriers. Semicond. Sci. Technol. 15, 79–83 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    P. Dasmahapatra et al., Thickness control of molecular beam epitaxy grown layers at the 0.01–0.1 monolayer level. Semicond. Sci. Technol. 27, 085007 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    C. Shao et al., Achieving reproducibility needed for manufacturing semiconductor tunnel devices. Electron. Lett. 49, 10 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Missous et al., Extremely uniform tunnel barriers for low-cost device manufacture. IEEE Electron Device Lett. 36, 6 (2015)CrossRefGoogle Scholar
  28. 28.
    M.J. Kelly, The unacceptable variability in tunnel current for proposed electronic device applications. Semicond. Sci. Technol. 21, L49–L51 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    A. Tchegho et al., Scalable high-current density RTDs with low series resistance, in IEEE International Conference on Indium Phosphide & Related Materials (2010)Google Scholar
  30. 30.
    K.J.P. Jacobs et al., A dual-pass high current density resonant tunneling diode for terahertz wave applications. IEEE Electron Device Lett. 36, 12 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Bâzu, & T. Băjenescu, Failure Analysis A Practical Guide for Manufacturers of Electronic Components and Systems (Wiley, 2011)Google Scholar
  32. 32.
    S.F. Nafea, A.A.S. Dessouki, An accurate large-signal SPICE model for resonant tunneling diode, in IEEE International Conference on Microelectronics (2010)Google Scholar
  33. 33.
    W. Lian, Resonant Tunneling Diode Mixer and Multiplier, Simon Fraser University Thesis (1994)Google Scholar
  34. 34.
    R. Maes, Physically Unclonable Functions (Springer, Berlin, 2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations