Skip to main content

Unique Identification with Resonant Tunneling Diodes

  • Chapter
  • First Online:
Using Imperfect Semiconductor Systems for Unique Identification

Part of the book series: Springer Theses ((Springer Theses))

  • 341 Accesses

Abstract

Electronic devices have become extremely prominent in everyday life, and it is now commonplace for them to control critical tasks, such as managing financial transactions. Therefore, it is of key importance that these devices can be securely identified to prevent illegitimate parties mimicking themselves as genuine, and gaining access to sensitive information. The popular methods of identification currently in use rely on the end user providing some information about themselves, such as a fingerprint or a password, but these authentication methods are known to be extremely vulnerable. Identities can also be provided by systems that exploit physical disorder, but there is a growing need for the security to be as robust as physically possible. Resonant tunneling diodes (RTDs), can provide such an uncomplicated measurement of identity, corresponding to the straightforward measurement of the macroscopic current that passes through the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. M. Cahay, J.P. Leburton, D.J. Lockwood, S. Bandyopadhyay, Quantum Confinement: Nanoscale Materials, Devices, and Systems (The Electrochemical Society, New Jersey, 1997)

    Google Scholar 

  2. R. Nötzel et al., Uniform quantum-dot arrays formed by natural self faceting on patterned substrates. Nature 392, 56 (1998)

    Article  ADS  Google Scholar 

  3. G. Juska et al., Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 7, 527 (2013)

    Article  ADS  Google Scholar 

  4. A. Mohan et al., Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nat. Photonics 4, 302 (2010)

    Article  Google Scholar 

  5. M. Ramsteiner et al., Influence of composition fluctuations in Al(Ga)As barriers on the exciton localization in thin GaAs quantum wells. Phys. Rev. B. 55, 5239 (1997)

    Article  ADS  Google Scholar 

  6. M. Tsuchiya, H. Sakaki, Dependence of resonant tunneling current on well widths in AlAs/GaAs/AlAs double barrier diode structures. Appl. Phys. Lett. 49, 88 (1986)

    Article  ADS  Google Scholar 

  7. D. Gammon et al., Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 16 (1996)

    Article  Google Scholar 

  8. R.J. Young et al., Inversion of exciton level splitting in quantum dots. Phys. Rev. B. 72, 113305 (2005)

    Article  ADS  Google Scholar 

  9. A. Gruber, Scanning confocal optical microscopy and magnetic resonance on single defect centres. Science 276, 5321 (1997)

    Article  Google Scholar 

  10. E.F. Schubert, Doping in III–V Semiconductors (Cambridge University Press, 1993)

    Google Scholar 

  11. W. Pötz, Z.Q. Li, Imperfections and resonant tunneling in quantum-well heterostructures. Solid State Electron. 32, 12 (1989)

    Google Scholar 

  12. J.J. Pla et al., A single-atom electron spin qubit in silicon. Nature 489, 541 (2012)

    Article  ADS  Google Scholar 

  13. W. Nakwaski, Thermal conductivity of binary, ternary, and quaternary III–V compounds. J. Appl. Phys. 64, 159 (1988)

    Article  ADS  Google Scholar 

  14. D.A. Drabold, S. Estreicher, Theory of Defects in Semiconductors (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  15. E.P. Smakman et al., GaSB/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 100, 142116 (2012)

    Article  ADS  Google Scholar 

  16. L.G. Wang et al., Size, shape, and stability of InAs quantum dots on the GaAs(001) Substrate. Phys. Rev. B. 62, 1897 (2000)

    Article  ADS  Google Scholar 

  17. N.J. Orfield et al., Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence. ACS Nano 9, 1 (2015)

    Article  Google Scholar 

  18. K.N. Kwok, Complete Guide to Semiconductor Devices (Wiley, 2010)

    Google Scholar 

  19. V.J. Goldman et al., Observation of intrinsic bistability in resoannt tunneling structures. Phys. Rev. Lett. 58, 1256 (1987)

    Article  ADS  Google Scholar 

  20. T.C.L.G. Sollner, Comment on ‘Observation of intrinsic bistability in resoannt tunneling structures’. Phys. Rev. Lett. 59, 1622 (1987)

    Article  ADS  Google Scholar 

  21. P. Zhao et al., Simulation of resonant tunneling structures: origin of the I–V hysteresis and plateau-like structure. J. Appl. Phys. 87, 1337 (2000)

    Article  ADS  Google Scholar 

  22. M.A.M. Zawawi et al., Fabrication of sub-micrometer InGaAs/AlAs resonant tunneling diode using a tri-layer soft reflow technique with excellent scalability. IEEE Trans. Electron Devices 61, 2338–2342 (2014)

    Article  Google Scholar 

  23. V.A. Wilkinson et al., Tunnel devices are not yet manufacturable. Semicond. Sci. Technol. 12, 91–99 (1997)

    Article  ADS  Google Scholar 

  24. M.J. Kelly, New statistical analysis of tunnel diode barriers. Semicond. Sci. Technol. 15, 79–83 (2000)

    Article  ADS  Google Scholar 

  25. P. Dasmahapatra et al., Thickness control of molecular beam epitaxy grown layers at the 0.01–0.1 monolayer level. Semicond. Sci. Technol. 27, 085007 (2012)

    Article  ADS  Google Scholar 

  26. C. Shao et al., Achieving reproducibility needed for manufacturing semiconductor tunnel devices. Electron. Lett. 49, 10 (2013)

    Article  Google Scholar 

  27. M. Missous et al., Extremely uniform tunnel barriers for low-cost device manufacture. IEEE Electron Device Lett. 36, 6 (2015)

    Article  Google Scholar 

  28. M.J. Kelly, The unacceptable variability in tunnel current for proposed electronic device applications. Semicond. Sci. Technol. 21, L49–L51 (2006)

    Article  ADS  Google Scholar 

  29. A. Tchegho et al., Scalable high-current density RTDs with low series resistance, in IEEE International Conference on Indium Phosphide & Related Materials (2010)

    Google Scholar 

  30. K.J.P. Jacobs et al., A dual-pass high current density resonant tunneling diode for terahertz wave applications. IEEE Electron Device Lett. 36, 12 (2015)

    Article  Google Scholar 

  31. M. Bâzu, & T. Băjenescu, Failure Analysis A Practical Guide for Manufacturers of Electronic Components and Systems (Wiley, 2011)

    Google Scholar 

  32. S.F. Nafea, A.A.S. Dessouki, An accurate large-signal SPICE model for resonant tunneling diode, in IEEE International Conference on Microelectronics (2010)

    Google Scholar 

  33. W. Lian, Resonant Tunneling Diode Mixer and Multiplier, Simon Fraser University Thesis (1994)

    Google Scholar 

  34. R. Maes, Physically Unclonable Functions (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Roberts .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roberts, J. (2017). Unique Identification with Resonant Tunneling Diodes. In: Using Imperfect Semiconductor Systems for Unique Identification. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67891-7_4

Download citation

Publish with us

Policies and ethics