Advertisement

An Introduction to Semiconductors and Quantum Confinement

  • Jonathan RobertsEmail author
Chapter
  • 286 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this thesis, atomically imperfect structures will be studied to investigate if such systems can provide adequate variation for unique identification, as the sensitive effects of quantum confinement exhibited in these low-dimensional structures is directly related to the order on this scale. Utilising the measurement of a quantum effect amplifies the influence of these atomic-scale defects, and provides a simple way to measure them simply and reliably. This work will lay the foundations for UNOs and PUFs comprising of such structures to be developed.

Bibliography

  1. 1.
    M. Cardona, F.H. Pollak, Energy-band structure of germanium and silicon: the k·p method. Phys. Rev. 142, 530 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    H. Ehrenreich, Band structure and electron transport of GaAs. Phys. Rev. 120, 1951 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    J.F. Prins, Fermi-Dirac statistics and the nature of the compensating donors in boron-doped diamond layers. Phys. Rev. B. 39, 3764 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    G.H. Wannier, On the energy band structure of insulators. Phys. Rev. 76, 438 (1949)ADSCrossRefGoogle Scholar
  5. 5.
    C.S. Hung, V.A. Johnson, Resistivity of semiconductors containing both acceptors and donors. Phys. Rev. 79, 535 (1950)ADSCrossRefGoogle Scholar
  6. 6.
    L.P. Bouckaert et al., Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58 (1936)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    G.H. Parker, C.A. Mead, Energy-momentum relationship of InAs. Phys. Rev. Lett. 21, 605 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    W.G. Spitzer, H.Y. Fan, Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. 106, 882 (1957)ADSCrossRefGoogle Scholar
  10. 10.
    R.N. Dexter, B. Lax, Effective masses of holes in silicon. Phys. Rev. 96, 223 (1954)ADSCrossRefGoogle Scholar
  11. 11.
    M.D. Sturge, Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 3 (1962)CrossRefGoogle Scholar
  12. 12.
    M.A. Green, M.J. Keevers, Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics 3, 3 (1995)CrossRefGoogle Scholar
  13. 13.
    P.T. Landsberg, M.J. Adams, Radiative and Auger processes in semiconductors. J. Lumin. 7, 3 (1973)CrossRefGoogle Scholar
  14. 14.
    D.J. Fitzgerald, A.S. Grove, Surface recombination in semiconductors, in Electron Devices Meeting (1967)Google Scholar
  15. 15.
    R. Hill, Energy-gap variations in semiconductor alloys. J. Phys. C Solid State Phys. 7, 521 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    C.B. Roxlo et al., Evidence for lattice-mismatch—induced defects in amorphous semiconductor heterostructures. Phys. Rev. Lett. 52, 1994 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    G. Scamarcio et al., Optical and vibrational properties of AlxGa1-xAs/AlAs multiple quantum wells near the direct-indirect cross-over. Surf. Sci. 228, 1 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    M. Fox, Optical Properties of Solids (Oxford University Press, 2010)Google Scholar
  19. 19.
    S. Schulz et al., Atomistic analysis of the impact of alloy and well-width fluctuations on the electronic and optical properties of InGaN/GaN quantum wells. Phys. Rev. B 91, 035439 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A. Gruber, Scanning confocal optical microscopy and magnetic resonance on single defect centres. Science 276, 5321 (1997)CrossRefGoogle Scholar
  21. 21.
    H.J. Queisser, E.E. Haller, Defects in semiconductors: some fatal, some vital. Science 281, 5379 (1998)CrossRefGoogle Scholar
  22. 22.
    X. Zhou et al., Observation of subsurface monolayer thickness fluctuations in InGaN/GaN quantum wells by scanning capacitance microscopy and spectroscopy. Appl. Phys. Lett. 85, 407 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    M. Belloeil et al., Quantum dot like behaviour of compositional fluctuations in AlGaN nanowires. Nano Lett. 16, 2 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Bao et al., Conductance fluctuations in chaotic bilayer graphene quantum dots. Phys. Rev. E 92, 012918 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S.K. Kirby et al., Atomic-scale imperfections and fluctuations in the transmission properties of a quantum dot. Phys. Rev. B. 50, 10990 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations