Skip to main content

On the Coupling of Decimation Operator with Subdivision Schemes for Multi-scale Analysis

  • Conference paper
  • First Online:
Mathematical Methods for Curves and Surfaces (MMCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10521))

Abstract

Subdivision schemes [5, 11] are powerful tools for the fast generation of refined sequences ultimately representing curves or surfaces. Coupled with decimation operators, they generate multi-scale transforms largely used in signal/image processing [1, 3] that generalize the multi-resolution analysis/wavelet framework [8]. The flexibility of subdivision schemes (a subdivision scheme can be non-stationary, non-homogeneous, position-dependent, interpolating, approximating, non-linear...) (e.g. [3]) is balanced, as a counterpart, by the fact that the construction of suitable consistent decimation operators is not direct and easy.

In this paper, we first propose a generic approach for the construction of decimation operators consistent with a given linear subdivision. A study of the so-called prediction error within the multi-scale framework is then performed and a condition on the subdivision mask to ensure a fast decay of this error is established. Finally, the cases of homogeneous Lagrange interpolatory subdivision, spline subdivision, subdivision related to Daubechies scaling functions (and wavelets) and some recently developed non stationary non interpolating schemes are revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    a scheme U is said to reproduce constant if \(\forall k, f_k=C \implies \forall k, (Uf)_k=C\).

References

  1. Amat, S., Donat, R., Liandrat, J., Trillo, J.: Analysis of a fully nonlinear multiresolution scheme for image processing. Found. Comput. Math. 6(2), 193–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amat, S., Liandrat, J.: On the stability of PPH nonlinear multiresolution. Appl. Comput. Harmon. Anal. 18, 198–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arandiga, F., Baccou, J., Doblas, M., Liandrat, J.: Image compression based on a multi-directional map-dependent algorithm. Appl. and Comp. Harm. Anal. 23(2), 181–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baccou, J., Liandrat, J.: Kriging-based interpolatory subdivision schemes. Appl. Comput. Harmon. Anal. 35, 228–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavaretta, A., Dahmen, W., Micchelli, C.: Stationary subdivision. In: Memoirs of the American Mathematics Society, vol. 93, No. 453, Providence, Rhode Island (1991)

    Google Scholar 

  6. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. CPAM 45(5), 485–560 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  9. De Rham, G.: Un peu de mathématiques à propos d’une courbe plane. Elem. Math. 2, 73–76 (1947)

    Google Scholar 

  10. Deslauries, G., Dubuc, S.: Interpolation dyadique. In: Fractals, dimensions non entières at applications, pp. 44–55 (1987)

    Google Scholar 

  11. Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Light, W. (ed.) Advances in Numerical Analysis II, Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 36–104. Clarendon Press, Oxford (1992)

    Google Scholar 

  12. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kui, Z.: Approximation multiechelle non lineaire et applications en analyse de risques. Ph.D. thesis, Ecole Centrale Marseille, Marseille, France (2018)

    Google Scholar 

  14. Si, X., Baccou, J., Liandrat, J.: On four-point penalized lagrange subdivision schemes. Appl. Math. Comput. 281, 278–299 (2016)

    MathSciNet  Google Scholar 

  15. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqing Kui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kui, Z., Baccou, J., Liandrat, J. (2017). On the Coupling of Decimation Operator with Subdivision Schemes for Multi-scale Analysis. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2016. Lecture Notes in Computer Science(), vol 10521. Springer, Cham. https://doi.org/10.1007/978-3-319-67885-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67885-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67884-9

  • Online ISBN: 978-3-319-67885-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics