Order-Randomized Laplacian Mesh Smoothing

  • Ying Yang
  • Holly Rushmeier
  • Ioannis IvrissimtzisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10521)


In this paper we compare three variants of the graph Laplacian smoothing. The first is the standard synchronous implementation, corresponding to multiplication by the graph Laplacian matrix. The second is a voter process inspired asynchronous implementation, assuming that every vertex is equipped with an independent exponential clock. The third is in-between the first two, with the vertices updated according to a random permutation of them. We review some well-known results on spectral graph theory and on voter processes, and we show that while the convergence of the synchronous Laplacian is graph dependent and, generally, does not converge on bipartite graphs, the asynchronous converges with high probability on all graphs. The differences in the properties of these three approaches are illustrated with examples including both regular grids and irregular meshes.


Laplacian smoothing Graph Laplacian matrix Voter processes Triangle meshes Regular grids Taubin smoothing 


  1. 1.
    Annuth, H., Bohn, C.: Growing surface structures: a topology focused learning scheme. In: Madani, K., Dourado, A., Rosa, A., Filipe, J., Kacprzyk, J. (eds.) Computational Intelligence. SCI, vol. 613, pp. 401–417. Springer, Cham (2016). doi: 10.1007/978-3-319-23392-5_22 CrossRefGoogle Scholar
  2. 2.
    Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2011). doi: 10.1007/978-1-4614-1939-6 zbMATHGoogle Scholar
  3. 3.
    Cashman, T.J., Hormann, K., Reif, U.: Generalized Lane-Riesenfeld algorithms. Comput. Aided Geom. Des. 30(4), 398–409 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cox, T., Griffeath, D.: Diffusive clustering in the two dimensional voter model. Ann. Probab. 14(2), 347–370 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH, pp. 317–324 (1999)Google Scholar
  6. 6.
    Donnelly, P., Welsh, D.: Finite particle systems and infection models. Math. Proc. Cambridge Philos. Soc. 94(01), 167–182 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)CrossRefGoogle Scholar
  8. 8.
    Gadde, A., Narang, S.K., Ortega, A.: Bilateral filter: graph spectral interpretation and extensions. In: 2013 IEEE International Conference on Image Processing, pp. 1222–1226. IEEE (2013)Google Scholar
  9. 9.
    Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to proportionate agreement. Inf. Comput. 171(2), 248–268 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.-P.: Interactive multi-resolution modeling on arbitrary meshes. In: SIGGRAPH, pp. 105–114. ACM (1998)Google Scholar
  11. 11.
    Lane, J.M., Riesenfeld, R.F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2(1), 35 (1980)CrossRefzbMATHGoogle Scholar
  12. 12.
    Li, Y., Chen, W., Wang, Y., Zhang, Z.-L.: Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 657–666. ACM (2013)Google Scholar
  13. 13.
    Nakata, T., Imahayashi, H., Yamashita, M.: A probabilistic local majority polling game on weighted directed graphs with an application to the distributed agreement problem. Networks 35(4), 266–273 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sabin, M.A., Barthe, L.: Artifacts in recursive subdivision surfaces. In: Curve and Surface Fitting: Saint-Malo, pp. 353–362 (2002)Google Scholar
  15. 15.
    Taubin, G.: A signal processing approach to fair surface design. In: SIGGRAPH, pp. 351–358 (1995)Google Scholar
  16. 16.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, 1998, pp. 839–846. IEEE (1998)Google Scholar
  17. 17.
    Ullah, B., Trevelyan, J., Ivrissimtzis, I.: A three-dimensional implementation of the boundary element and level set based structural optimisation. Eng. Anal. Boundary Elem. 58, 176–194 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vollmer, J., Mencl, R., Mueller, H.: Improved laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)CrossRefGoogle Scholar
  19. 19.
    Zhou, C., Zhang, P., Zang, W., Guo, L.: On the upper bounds of spread for greedy algorithms in social network influence maximization. IEEE Trans. Knowl. Data Eng. 27(10), 2770–2783 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ying Yang
    • 1
    • 2
  • Holly Rushmeier
    • 2
  • Ioannis Ivrissimtzis
    • 3
    Email author
  1. 1.Fujian Provincial Key Laboratory of Information Processing and Intelligent ControlMinjiang UniversityFuzhouChina
  2. 2.Yale UniversityNew HavenUSA
  3. 3.Durham UniversityDurhamUK

Personalised recommendations