Advertisement

Application of Longest Common Subsequence Algorithms to Meshing of Planar Domains with Quadrilaterals

  • Petra SurynkováEmail author
  • Pavel Surynek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10521)

Abstract

The problem of mesh matching is addressed in this work. For a given n-sided planar region bounded by one loop of n polylines we are selecting optimal quadrilateral mesh from existing catalogue of meshes. The formulation of matching between planar shape and quadrilateral mesh from the catalogue is based on the problem of finding longest common subsequence (LCS). Theoretical foundation of mesh matching method is provided. Suggested method represents a viable technique for selecting best mesh for planar region and stepping stone for further parametrization of the region.

Keywords

Quadrilaterals Quadrilateral mesh Optimal mesh Longest common subsequence n-sided planar region 

References

  1. 1.
    Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings of the Seventh International Symposium on String Processing Information Retrieval (SPIRE 2000), pp. 39–48. IEEE Computer Society, Washington, D.C. (2000)Google Scholar
  2. 2.
    Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.: Quad-mesh generation and processing: a survey. Comput. Graph. Forum 32(6), 51–76 (2013)CrossRefGoogle Scholar
  3. 3.
    Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing. A K Peters, Natick (2010)CrossRefGoogle Scholar
  4. 4.
    Buchegger, F., Jüttler, B.: Planar multi-patch domain parameterization via patch adjacency graphs. Comput. Aided Des. 82, 2–12 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen, E., Martin, T., Kirby, R., Lyche, T., Riesenfeld, R.: Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput. Meth. Appl. Mech. Eng. 199(5–8), 334–356 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. McGraw-Hill Higher Education, London (2001)zbMATHGoogle Scholar
  7. 7.
    Díaz-Morcillo, A., Bernal-Ros, A., Nuño, L.: Mesh generation methods over plane and curved surfaces. In: Proceedings of the 7th International Meshing Roundtable, IMR 1998, Dearborn, Michigan, USA, 26–28 October 1998, pp. 397–407 (1998)Google Scholar
  8. 8.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, New York (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Floater, M., Hormann, K.: Surface Parameterization: A Tutorial and Survey, pp. 157–186. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements. Wiley, London (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jimack, P.K., Mahmood, R., Walkley, M.A., Berzins, M.: A multilevel approach for obtaining locally optimal finite element meshes. Adv. Eng. Softw. 33(7–10), 403–415 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kälberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using branched coverings. Comput. Graph. Forum 26(3), 375–384 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Knupp, P.: Remarks on Mesh Quality, Reno, NV, 7–10 January 2007Google Scholar
  16. 16.
    Liu, Y., Xing, H.L., Guan, Z.: An indirect approach for automatic generation of quadrilateral meshes with arbitrary line constraints. Numer. Meth. Eng. 87(9), 906–922 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lo, D.S.H.: Finite Element Mesh Generation. CRC Press, Boca Raton (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  19. 19.
    Mitchell, S.A.: A characterization of the quadrilateral meshes of a surface which admit a compatible hexahedral mesh of the enclosed volume. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 465–476. Springer, Heidelberg (1996). doi: 10.1007/3-540-60922-9_38 CrossRefGoogle Scholar
  20. 20.
    Nasri, A., Sabin, M., Yasseen, Z.: Filling n-sided regions by quad meshes for subdivision surfaces. Comput. Graph. Forum 28(6), 1644–1658 (2009)CrossRefGoogle Scholar
  21. 21.
    Peng, C.H., Barton, M., Jiang, C., Wonka, P.: Exploring quadrangulations. ACM Trans. Graph. 33(1), 1–13 (2014)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ramaswami, S., Siqueira, M., Sundaram, T.A., Gallier, J.H., Gee, J.C.: A new algorithm for generating quadrilateral meshes and its application to FE-based image registration. In: Proceedings of the 12th International Meshing Roundtable, IMR 2003, Santa Fe, New Mexico, USA, 14–17 September 2003, pp. 159–170 (2003)Google Scholar
  23. 23.
    Surynkova, P., Buchegger, F: Enumerating quadrilateral meshes. Comput. Aided Geom. Des. (submitted 2017)Google Scholar
  24. 24.
    Takayama, K., Panozzo, D., Sorkine-Hornung, O.: Pattern-based quadrangulation for N-sided patches. Comput. Graph. Forum 33(5), 177–184 (2014)CrossRefGoogle Scholar
  25. 25.
    Ukkonen, E.: Algorithms for approximate string matching. Inf. Control 64(1–3), 100–118 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ullman, J.D., Aho, A.V., Hirschberg, D.S.: Bounds on the complexity of the longest common subsequence problem. J. ACM 23(1), 1–12 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Johannes Kepler University LinzLinzAustria
  2. 2.Artificial Intelligence Research CenterAIST Tokyo WaterfrontTokyoJapan

Personalised recommendations