Advertisement

Deconfliction and Surface Generation from Bathymetry Data Using LR B-splines

  • Vibeke SkyttEmail author
  • Quillon Harpham
  • Tor Dokken
  • Heidi E. I. Dahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10521)

Abstract

A set of bathymetry point clouds acquired by different measurement techniques at different times, having different accuracy and varying patterns of points, are approximated by an LR B-spline surface. The aim is to represent the sea bottom with good accuracy and at the same time reduce the data size considerably. In this process the point clouds must be cleaned by selecting the “best” points for surface generation. This cleaning process is called deconfliction, and we use a rough approximation of the combined point clouds as a reference surface to select a consistent set of points. The reference surface is updated using only the selected points to create an accurate approximation. LR B-splines is the selected surface format due to its suitability for adaptive refinement and approximation, and its ability to represent local detail without a global increase in the data size of the surface.

Keywords

Bathymetry Surface generation Deconfliction LR B-splines 

References

  1. 1.
    Bhattacharyya, G.K., Johnson, R.A.: Statistical Concepts and Methods. Wiley, New York (1977)Google Scholar
  2. 2.
    Büchenschütz-Nothdurft, O., Pronk, M.J., van Opstal, L.H.: Latest Developments in Bathymetry Data Processing and its Application to Sandwave Detection. Marine Sandwave and River Dune Dynamics, 1–2 April 2004Google Scholar
  3. 3.
    Davydov, O., Zeilfelder, F.: Scattered data fitting by direct extension of local polynomials to bivariate splines. Adv. Comp. Math. 21, 223–271 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Davydov, O., Morandi, R., Sestini, A.: Local hybrid approximations for scattered data fitting with bivariate splines. CAGD 23, 703–721 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Debese, N.: Multibeam Echosounder Data Cleaning Through an Adaptive Surface-based Approach. US Hydro 07 Norfolk, May 2007Google Scholar
  6. 6.
    Dokken, T., Pettersen, K.F., Lyche, T.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30(3), 331–356 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Floater, M.S., Iske, A.: Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math. 73, 65–78 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Forsey, D.R., Bartels, R.H.: Surface fitting with hierarchical splines. ACM Trans. Graph. 14(2), 134–161 (1995)CrossRefGoogle Scholar
  9. 9.
    Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Shumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 163–172. Vanderbildt University Press, Nashville (1997)Google Scholar
  10. 10.
    Hennis, N.: Automatic outlier detection in multibeam data. Master thesis, Delft University of Technology, September 2003Google Scholar
  11. 11.
    Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Johannessen, K.A., Kvamsdal, T., Dokken, T.: Isogeometric analysis using LR B-splines. Comput. Meth. Appl. Mech. Eng. 269, 471–514 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-splines. IEEE Trans. Visual. Comput. Graph. 3(3), 229–244 (1997)CrossRefGoogle Scholar
  14. 14.
    Lu, D., Li, H., Wei, Y., Zhou, T.: Automatic outlier detection in multibeam bathymetry data using robust LTS estimation. In: 2010 3rd International Congress on Image and Signal Processing (CISP) (2010)Google Scholar
  15. 15.
    Mehlum, E., Skytt, V.: Surface editing. In: Dœhlen, M., Tveito, A. (eds.) Numerical Methods and Software Tools in Industrial Mathematics. Birkhäusser, Boston (1997)Google Scholar
  16. 16.
    Mitas, L., Mitasova, H.: Spatial interpolation. In: Longley, P., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographic Information Systems - Principles, Techniques, Management, and Applications, pp. 481–498 (2005)Google Scholar
  17. 17.
    NIST/SEMATECH e-Handbook of Statistical Methods (2012). http://www.itl.nist.gov/div898/handbook/eda/section3//eda3672.htm
  18. 18.
    NIST/SEMATECH e-Handbook of Statistical Methods (2012). http://www.itl.nist.gov/div898/handbook/eda/section3//eda353.htm
  19. 19.
    Nowacki, H., Westgaard, G., Heimann, J.: Creation of fair surfaces based on higher order fairness measures with interpolation constraints. In: Nowacki, H., Kaklis, P.D. (eds.) Creating Fair and Shape-Preserving Curves and Surfaces. B.G. Teubner, Stuttgart (1998)Google Scholar
  20. 20.
    Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information system. Int. J. Geogr. Inf. Syst. 4(3), 323–332 (1990)Google Scholar
  21. 21.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)CrossRefGoogle Scholar
  22. 22.
    Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of 23rd National Conference, pp. 517–523. ACM (1968)Google Scholar
  23. 23.
    Skytt, V., Barrowclough, O., Dokken, T.: Locally refined spline surfaces for representation of terrain data. Comput. Graph. 49, 48–58 (2015)CrossRefGoogle Scholar
  24. 24.
    Skytt, V., Patané, G., Barrowclough, O., Dokken, T., Spagnuolo, M.: Spatial and environmental data approximation. In: Patané, G., Spagnuolo, M. (eds.) Heterogeneous Spatial Data: Fusion, Modeling and Analysis for GIS Applications. Synthesis Lectures on Visual Computing. Morgan & Claypool Publishers, April 2016Google Scholar
  25. 25.
    Sulebak, J.R., Hjelle, Ø.: Multiresolution spline models and their applications in geomorphology. In: Evans, I.S., Dikau, R., Tokunaga, R., Ohmori, H., Hirano, M. (eds.) Concepts and Modeling in Geomorphology: International Perspectives, pp. 221–237. Terra Publications, Tokyo (2003)Google Scholar
  26. 26.
    Zhang, W., Tang, Z., Li, J.: Adaptive hierachical B-spline surface approximation of large-scale scattered data. In: Sixth Pacific Conference on Computer Graphics and Applications, Pacific Graphics 1998 (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vibeke Skytt
    • 1
    Email author
  • Quillon Harpham
    • 2
  • Tor Dokken
    • 1
  • Heidi E. I. Dahl
    • 1
  1. 1.SINTEFOsloNorway
  2. 2.HR WallingfordWallingford, OxfordshireUK

Personalised recommendations