Reparameterization and Adaptive Quadrature for the Isogeometric Discontinuous Galerkin Method

  • Agnes SeilerEmail author
  • Bert Jüttler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10521)


We use the Poisson problem with Dirichlet boundary conditions to illustrate the complications that arise from using non-matching interface parameterizations within the framework of Isogeometric Analysis on a multi-patch domain, using discontinuous Galerkin (dG) techniques to couple terms across the interfaces. The dG-based discretization of a partial differential equation is based on a modified variational form, where one introduces additional terms that measure the discontinuity of the values and normal derivatives across the interfaces between patches. Without matching interface parameterizations, firstly, one needs to identify pairs of associated points on the common interface of the two patches for correctly evaluating the additional terms. We will use reparameterizations to perform this task. Secondly, suitable techniques for numerical integration are needed to evaluate the quantities that occur in the discretization with the required level of accuracy. We explore two possible approaches, which are based on subdivision and adaptive refinement, respectively.


  1. 1.
    Bazilevs, Y., de Veiga, L.B., Cottrell, J.A., Hughes, T.J., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brivadis, E., Buffa, A., Wohlmuth, B., Wunderlich, L.: Isogeometric mortar methods. Comput. Methods Appl. Mech. Eng. 284, 292–319 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brunero, F.: Discontinuous Galerkin methods for Isogeometric analysis. Master’s thesis, Università degli Studi di Milano (2012)Google Scholar
  4. 4.
    Cockburn, B.: Discontinuous Galerkin methods. J. Appl. Math. Mech. 83, 731–754 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. Toward Integration of CAD and FEA. Wiley, Chichester (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dierckx, P.: Curve and Surface Fitting with Splines. Monographs on Numerical Analysis. Oxford Science Publications, Oxford (1995)zbMATHGoogle Scholar
  8. 8.
    Gander, W., Gautschi, W.: Adaptive quadrature - revisited. BIT Numer. Math. 40(1), 84–101 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hofer, C.: Personal communicationGoogle Scholar
  10. 10.
    Hofer, C., Langer, U., Toulopoulos, I.: Discontinuous Galerkin isogeometric analysis of elliptic diffusion problems on segmentations with gaps. SIAM J. Sci. Comput. (2016). Accepted manuscript, arXiv:1511.05715
  11. 11.
    Hofer, C., Toulopoulos, I.: Discontinuous Galerkin isogeometric analysis of elliptic problems on segmentations with non-matching interfaces. Comput. Math. Appl. 72, 1811–1827 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Multipatch discontinuous Galerkin isogeometric analysis. In: Jüttler, B., Simeon, B. (eds.) Isogeometric Analysis and Applications 2014. LNCSE, vol. 107, pp. 1–32. Springer, Cham (2015). doi: 10.1007/978-3-319-23315-4_1. NFN Technical Report No. 18 at CrossRefGoogle Scholar
  13. 13.
    Langer, U., Moore, S.E.: Discontinuous galerkin isogeometric analysis of elliptic pdes on surfaces. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineering XXII. LNCSE, vol. 104, pp. 319–326. Springer, Cham (2016). doi: 10.1007/978-3-319-18827-0_31. arXiv:1402.1185 CrossRefGoogle Scholar
  14. 14.
    Langer, U., Toulopoulos, I.: Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems. Comput. Vis. Sci. 17(5), 217–233 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mantzaflaris, A., Jüttler, B.: Integration by interpolation and look-up for Galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 373–400 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nguyen, V.P., Kerfriden, P., Brino, M., Bordas, S.P., Bonisoli, E.: Nitsche’s method for two and three dimensional NURBS patch coupling. Comput. Mech. 53(6), 1163–1182 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM (2008)Google Scholar
  18. 18.
    Zhang, F., Xu, Y., Chen, F.: Discontinuous Galerkin methods for isogeometric analysis for elliptic equations on surfaces. Commun. Math. Stat. 2(3), 431–461 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Doctoral Program “Computational Mathematics”Johannes Kepler University LinzLinzAustria
  2. 2.Institute of Applied GeometryJohannes Kepler University LinzLinzAustria

Personalised recommendations