Reconstructing Sparse Exponential Polynomials from Samples: Difference Operators, Stirling Numbers and Hermite Interpolation

  • Tomas SauerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10521)


Prony’s method, in its various concrete algorithmic realizations, is concerned with the reconstruction of a sparse exponential sum from integer samples. In several variables, the reconstruction is based on finding the variety for a zero dimensional radical ideal. If one replaces the coefficients in the representation by polynomials, i.e., tries to recover sparse exponential polynomials, the zeros associated to the ideal have multiplicities attached to them. The precise relationship between the coefficients in the exponential polynomial and the multiplicity spaces are pointed out in this paper.


  1. 1.
    Auzinger, W., Stetter, H.J.: An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. In: Numerical mathematics, Singapore 1988, Internationale Schriftenreihe zur Numerischen Mathematik, vol. 86, pp. 11–30. Birkhäuser, Basel (1988)Google Scholar
  2. 2.
    de Boor, C.: Divided differences. Surv. Approximation Theory 1, 46–69 (2005). MathSciNetzbMATHGoogle Scholar
  3. 3.
    de Boor, C.: Ideal interpolation. In: Chui, C.K., Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XI, Gaitlinburg 2004, pp. 59–91. Nashboro Press (2005)Google Scholar
  4. 4.
    de Boor, C., Ron, A.: The least solution for the polynomial interpolation problem. Math. Z. 210, 347–378 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cohen, A.M., Cuypers, H., Sterk, M. (eds.): Some Tapas of Computer Algebra. Algorithms and Computations in Mathematics, vol. 4. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  6. 6.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (1996)zbMATHGoogle Scholar
  7. 7.
    Gould, H.W.: Noch einmal die Stirlingschen Zahlen. Jber. Deutsch. Math.-Verein 73, 149–152 (1971)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1998)Google Scholar
  9. 9.
    Gröbner, W.: Über das Macaulaysche inverse System und dessen Bedeutung für die Theorie der linearen Differentialgleichungen mit konstanten Koeffizienten. Abh. Math. Sem. Hamburg 12, 127–132 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gröbner, W.: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten. Monatsh. Math. 47, 247–284 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)zbMATHGoogle Scholar
  12. 12.
    Jordan, C.: Calculus of Finite Differences, 3rd edn. Chelsea, New York (1965)zbMATHGoogle Scholar
  13. 13.
    Marinari, M.G., Möller, H.M., Mora, T.: On multiplicities in polynomial system solving. Trans. Am. Math. Soc. 348(8), 3283–3321 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Möller, H.M., Stetter, H.J.: Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems. Numer. Math. 70, 311–329 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Möller, H.M., Tenberg, R.: Multivariate polynomial system solving using intersections of eigenspaces. J. Symbolic Comput. 32, 513–531 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mourrain, B.: Polynomial-exponential decomposition from moments (2016). arXiv:1609.05720v1
  17. 17.
    Prony, C.: Essai expérimental et analytique sur les lois de la dilabilité des fluides élastiques, et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J. de l’École Polytechnique 2, 24–77 (1795)Google Scholar
  18. 18.
    Sauer, T.: Kernels of discrete convolutions and subdivision operators. Acta Appl. Math. 145, 115–131 (2016). arXiv:1403.7724 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sauer, T.: Prony’s method in several variables. Numer. Math. (2017, to appear). arXiv:1602.02352
  20. 20.
    Sauer, T.: Prony’s method in several variables: symbolic solutions by universal interpolation. J. Symbolic Comput. (2017, to appear). arXiv:1603.03944
  21. 21.
    Schreiber, A.: Multivariate Stirling polynomials of the first and second kind. Discrete Math. 338, 2462–2484 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Steffensen, I.F.: Interpolation. Chelsea Publication, New York (1927)zbMATHGoogle Scholar
  23. 23.
    Stetter, H.J.: Matrix eigenproblems at the heart of polynomial system solving. SIGSAM Bull. 30(4), 22–25 (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung & FORWISSUniversity of PassauPassauGermany

Personalised recommendations