Skip to main content

Towards Subdivision Surfaces C2 Everywhere

  • Conference paper
  • First Online:
Mathematical Methods for Curves and Surfaces (MMCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10521))

  • 958 Accesses

Abstract

The conditions for subdivision surfaces which are piecewise polynomial in the regular region to have continuity higher than C1 were identified by Reif [7]. The conditions are ugly and although schemes have been identified and implemented which satisfy them, those schemes have not proved satisfactory from other points of view. This paper explores what can be created using schemes which are not piecewise polynomial in the regular regions, and the picture looks much rosier. The key ideas are (i) use of quasi-interpolation (ii) local evaluation of coefficients in the irregular context. A new method for determining lower bounds on the Hölder continuity of the limit surface is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    K here is normalised to sum to 1: the kernel is thus 4K. This factor of 4 is analogous to the factor of 2 in the expression for the univariate scheme mentioned above.

  2. 2.

    In the case of schemes having multiple kinds of e- and f-vertices (for example, that of [9] or of higher arity) each kind will need individual calculations of this type.

  3. 3.

    For example, to get better continuity when the set of support points needs to change because of changes in the set of local neighbours.

References

  1. McLain, D.H.: Two dimensional interpolation from random data. Comput. J. 19(2), 178–181 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Catmull, E.E., Clark, J.: Recursively generated B-spline surfaces on topological meshes. CAD 10(6), 350–355 (1978)

    Google Scholar 

  3. Doo, D.W.H., Sabin, M.A.: Behaviour of recursive division surfaces near extraordinary points. CAD 10(6), 356–360 (1978)

    Google Scholar 

  4. Loop, C.T.: Smooth subdivision surfaces based on triangles. M.S. Mathematics thesis, University of Utah (1987)

    Google Scholar 

  5. Dyn, N., Levin, D., Gregory, J.: A butterfly subdivision scheme for surface interpolation with tension control. ACM ToG 9(2), 160–169 (1990)

    Article  MATH  Google Scholar 

  6. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. Memoirs of the American Mathematical Society, no. 453. AMS, Providence (1991)

    Google Scholar 

  7. Reif, U.: A degree estimate for subdivision surfaces of higher regularity. In: Proceedings of AMS, vol. 124, pp. 2167–2175 (1996)

    Google Scholar 

  8. Reif, U.: TURBS - topologically unrestricted rational B-splines. Constr. Approx. 14(1), 57–77 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Prautzsch, H.: Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9(3–4), 377–389 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Prautzsch, H., Reif, U.: Degree estimates for \(C^\text{ k }\)-piecewise polynomial subdivision surfaces. Adv. Comput. Math. 10(2), 209–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kobbelt, L.: \(\sqrt{3}\)-subdivision. In: Proceedings of SIGGRAPH 2000, pp. 103–112 (2000)

    Google Scholar 

  12. Velho, L.: Quasi 4–8 subdivision. CAGD 18(4), 345–357 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Levin, D.: Presentation at Dagstuhl Workshop (2000)

    Google Scholar 

  14. Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G., Hamann, B., Müller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization, pp. 37–49. Springer, Heidelberg (2004)

    Google Scholar 

  15. Peters, J., Reif, U.: Shape Characterization of subdivision surfaces - basic principles. CAGD 21, 585–599 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Karciauskas, K., Peters, J., Reif, U.: Shape Characterization of subdivision surfaces - case studies. CAGD 21, 601–614 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Levin, A.: The importance of polynomial reproduction in piecewise-uniform subdivision. In: Martin, R., Bez, H., Sabin, M. (eds.) IMA 2005. LNCS, vol. 3604, pp. 272–307. Springer, Heidelberg (2005). doi:10.1007/11537908_17. ISBN 3-540-28225-4

    Chapter  Google Scholar 

  18. Levin, A.: Modified subdivision surfaces with continuous curvature. ACM (TOG) 25(3), 1035–1040 (2006)

    Article  Google Scholar 

  19. Zulti, A., Levin, A., Levin, D., Taicher, M.: C2 subdivision over triangulations with one extraordinary point. CAGD 23(2), 157–178 (2006)

    MATH  Google Scholar 

  20. Hormann, K., Sabin, M.A.: A family of subdivision schemes with cubic precision. CAGD 25(1), 41–52 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Dyn, N., Hormann, K., Sabin, M.A., Shen, Z.: Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theor. 155(1), 28–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boyé, S., Guennebaud, G., Schlick, C.: Least squares subdivision surfaces. Comput. Graph. Forum 29(7), 2021–2028 (2010)

    Article  Google Scholar 

  23. Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra. CAGD 28(3), 177–197 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra. CAGD 28(3), 198–211 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Deng, C., Hormann, K.: Pseudo-spline subdivision surfaces. Comput. Graph. Forum 33(5), 227–236 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

My thanks go to a very diligent referee who bothered to construct a counterexample disproving a conjecture in my first draft of this paper and also pointed out many places where the original text was not clear. I also thank colleagues: Cedric Gerot for helping me understand that counterexample, Leif Kobbelt and Ulrich Reif for prompt replies to my emails requesting clarifications, and to Ioannis Ivrissimtzis for bringing the moving least squares ideas to my attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Sabin .

Editor information

Editors and Affiliations

Appendices

Annex 1: Computation of Stencil Nearest to a Regular Stencil

In the topologically regular but geometrically irregular case, I suggest that the nearest solution to the regular one should be chosen. This gives some measure of continuity with respect to changing layouts in the abscissa plane. The metric for ‘nearest’ might be chosen by more sophisticated arguments laterFootnote 3, but for the moment I just use the euclidean distance in coefficient space.

Call the number of coefficients c and the number of quasi-interpolation conditions n.

The quasi-interpolating conditions define a linear subspace of dimension \(c-n\) in the space of dimension \(c-1\) of sets of coefficients: nearness to the regular coefficients defines a complementary subspace orthogonal to it, and the solution can be found in that subspace by solving a linear system of size \(n\times n\).

Let the set of coefficients be \(a_i,\ i\in 1..c\), and let the quasi-interpolation conditions be

$$\begin{aligned} \forall j\in 1..n\quad \varSigma _i a_if_j(v_i) = 0 \end{aligned}$$

If the regular coefficients are \(\bar{a}_i\), then we can set up the system

$$\forall i\ a_i = \bar{a}_i + \varSigma _{k\in 1..n}\,\delta _k f_k(v_i)$$

and solve for the \(\delta _j\).

$$\begin{aligned} \forall j\in 1..n\quad 0= & {} \varSigma _i a_if_j(v_i) \\= & {} \varSigma _i\, \left( \bar{a}_i + \varSigma _{k}\,\delta _k f_k(v_i)\right) f_j(v_i) \\= & {} \varSigma _i\, \bar{a}_if_j(v_i) + \varSigma _i \,\varSigma _{k}\,\delta _k f_k(v_i)f_j(v_i) \\= & {} \varSigma _i\, \bar{a}_if_j(v_i) + \varSigma _{k}\,\varSigma _i\,\delta _k f_k(v_i)f_j(v_i) \\= & {} \varSigma _i\, \bar{a}_if_j(v_i) + \varSigma _{k}\,\delta _k\varSigma _i\, f_k(v_i)f_j(v_i) \\\left[ \begin{matrix}\ddots &{}&{}\\ &{}\varSigma _i\, f_k(v_i)f_j(v_i)&{}\\ &{}&{}\ddots \end{matrix}\right] \left[ \begin{matrix}\vdots \\ \delta _k\\ \vdots \\ \end{matrix}\right]= & {} -\left[ \begin{matrix}\vdots \\ \varSigma _i\, \bar{a}_if_j(v_i)\\ \vdots \\ \end{matrix}\right] \\\end{aligned}$$

The actual coefficients can then be determined from these \(\delta _j\) values.

$$\begin{aligned} \forall i\ a_i:= & {} \bar{a}_i + \varSigma _{k}\,\delta _k f_k(v_i) \end{aligned}$$

The rate of convergence with distance from the EV in an interesting natural configuration can be measured by how \(\varSigma _j \delta _j^2\) varies with distance.

Annex 2: Convergence for Conformal Characteristic Map

Table 7. Valency = 5, reproduction degree = 2
Table 8. Valency = 5, reproduction degree = 3
Table 9. Valency = 7, reproduction degree = 2
Table 10. Valency = 7, reproduction degree = 3

These figures in Tables 7, 8, 9 and 10 (\(E1=\varSigma _i \delta _i^2\) and \(E2=max_i |\delta _i|\)) are disappointing in that the convergence is so slow. A conjecture that the rate of convergence would be \(d^{-6}\) has been soundly disproved by these calculations.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sabin, M. (2017). Towards Subdivision Surfaces C2 Everywhere. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2016. Lecture Notes in Computer Science(), vol 10521. Springer, Cham. https://doi.org/10.1007/978-3-319-67885-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67885-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67884-9

  • Online ISBN: 978-3-319-67885-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics