Skip to main content

Computational Assessment of Curvatures and Principal Directions of Implicit Surfaces from 3D Scalar Data

  • Conference paper
  • First Online:
Mathematical Methods for Curves and Surfaces (MMCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10521))

Abstract

An implicit method based on high-order differentiation to determine the mean, Gaussian and principal curvatures of implicit surfaces from a three-dimensional scalar field is presented and assessed. The method also determines normal vectors and principal directions. Compared to explicit methods, the implicit approach shows robustness and improved accuracy to measure curvatures of implicit surfaces. This is evaluated on simple cases where curvature is known in closed-form. The method is applied to compute the curvatures of wrinkled flames on large triangular unstructured meshes (namely a 3D isosurface of temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albin, E., D’Angelo, Y.: Assessment of the evolution equation modelling approach for three-dimensional expanding wrinkled premixed flames. Combust. Flame 159(5), 1932–1948 (2012)

    Article  Google Scholar 

  2. Albin, E., D’Angelo, Y., Vervisch, L.: Using staggered grids with characteristic boundary conditions when solving compressible reactive Navier-Stokes equations. Int. J. Numer. Methods Fluids 68(5), 546–563 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albin, E., D’Angelo, Y., Vervisch, L.: Flow streamline based Navier-Stokes characteristic boundary conditions: modeling for transverse and corner outflows. Comput. Fluids 51(1), 115–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cazals, F., Faugère, J.C., Pouget, M., Rouillier, F.: The implicit structure of ridges of a smooth parametric surface. Comput. Aided Geom. Des. 23(7), 582–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S.: Level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124(2), 449–464 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chauveau, C., Birouk, M., Gökalp, I.: An analysis of the \(d^2\)-law departure during droplet evaporation in microgravity. Int. J. Multiph. Flow 37(3), 252–259 (2011)

    Article  Google Scholar 

  8. D’Angelo, Y., Joulin, G., Boury, G.: On model evolution equations for the whole surface of three-dimensional expanding wrinkled premixed flames. Combust. Theor. Model. 4(3), 317–338 (2000)

    Article  MATH  Google Scholar 

  9. Denet, B.: Nonlinear model equation for three-dimensional Bunsen flames. Phys. Fluids 16(4), 1149–1155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Douros, I., Buxton, B.F.: Three-dimensional surface curvature estimation using quadric surface patches. In: Scanning (2002)

    Google Scholar 

  11. Dyn, N., Hormann, K., Kim, S.J., Levin, D.: Optimizing 3D triangulations using discrete curvature analysis. In: Mathematical Methods for Curves and Surfaces, pp. 135–146 (2001)

    Google Scholar 

  12. Gatzke, T., Grimm, C.M.: Estimating curvature on triangular meshes. Int. J. Shape Model. 12(1), 1–28 (2006)

    Article  MATH  Google Scholar 

  13. Giuliani, D.: Gaussian curvature: a growth parameter for biological structures. Math. Comput. Modell. 42(11), 1375–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hameiri, E., Shimshoni, I.: Estimating the principal curvatures and the Darboux frame from real 3-D range data. IEEE Trans. Syst. Man Cybern. B Cybern. 33(4), 626–637 (2003)

    Article  Google Scholar 

  16. Jeffreys, H., Jeffreys, B.S.: Methods of Mathematical Physics, §9.011 Lagrange’s Interpolation Formula, p. 261. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  17. Lebas, R., Menard, T., Beau, P.A., Berlemont, A., Demoulin, F.X.: Numerical simulation of primary break-up and atomization: DNS and modelling study. Int. J. Multiph. Flow 35(3), 247–260 (2009)

    Article  Google Scholar 

  18. Lehmann, N., Reif, U.: Notes on the curvature tensor. Graph. Models 74, 321–325 (2012)

    Article  Google Scholar 

  19. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  20. Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretization for level set methods: application to tumor growth. J. Comput. Phys. 215(2), 392–401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.F.: A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys. 225(1), 949–974 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. McIvor, A.M., Valkenburg, R.J.: A comparison of local surface geometry estimation methods. Mach. Vis. Appl. 10(1), 17–26 (1997)

    Article  Google Scholar 

  23. Ménard, T., Tanguy, S., Berlemont, A.: Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Int. J. Multiph. Flow 33(5), 510–524 (2007)

    Article  Google Scholar 

  24. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Visual. Math. III, 35–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Musuvathy, S., Cohen, E., Damon, J., Seong, J.K.: Principal curvature ridges and geometrically salient regions of parametric B-spline surfaces. Comput. Aided Des. 43(7), 756–770 (2011)

    Article  Google Scholar 

  26. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003). doi:10.1007/b98879

    Book  MATH  Google Scholar 

  27. Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting: crease detection and curvature estimation on large, noisy meshes. Graph. Models 64(3), 199–229 (2002)

    Article  MATH  Google Scholar 

  28. Peng, J., Li, Q., Kuo, C.C.J., Zhou, M.: Estimating Gaussian curvatures from 3D meshes. Electron. Imaging 5007, 270–280 (2003)

    Google Scholar 

  29. Popinet, S.: The GNU triangulated surface library (2004)

    Google Scholar 

  30. Prax, C., Sadat, H., Dabboura, E.: Evaluation of high order versions of the diffuse approximate meshless method. Appl. Math. Comput. 186(2), 1040–1053 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Squillacote, A.H.: The ParaView Guide: A Parallel Visualization Application. Kitware, New York (2007)

    Google Scholar 

  32. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Thirion, J.P., Gourdon, A.: The 3D marching lines algorithm and its application to crest lines extraction. Research report (1992)

    Google Scholar 

  34. Treece, G.M., Prager, R.W., Gee, A.H.: Regularised marching tetrahedra: improved iso-surface extraction. Comput. Graph. 23(4), 583–598 (1999)

    Article  Google Scholar 

  35. Trott, M.: The Mathematica Guidebook for Graphics. Springer, New York (2004). doi:10.1007/978-1-4419-8576-7

    Book  MATH  Google Scholar 

  36. Yan, B., Li, B., Baudoin, E., Liu, C., Sun, Z.W., Li, Z.S., Bai, X.S., Aldén, M., Chen, G., Mansour, M.S.: Structures and stabilization of low calorific value gas turbulent partially premixed flames in a conical burner. Exp. Thermal Fluid Sci. 34(3), 412–419 (2010)

    Article  Google Scholar 

  37. Yoo, C.S., Im, H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theor. Model. 11(2), 259–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu, R., Bai, X.S.: Direct numerical simulation of lean hydrogen/air auto-ignition in a constant volume enclosure. Combust. Flame 160(9), 1706–1716 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Albin .

Editor information

Editors and Affiliations

A Derivation of Formulas for Principal Directions of Implicit Surfaces

A Derivation of Formulas for Principal Directions of Implicit Surfaces

The methodology of Lehmann et al. [18] is used to build the curvature tensor in the (\(\varvec{u},\varvec{v},\varvec{n}\)) frame. In this frame, the orthogonal projector T onto the tangent space and the Hessian matrix of \(\phi \) are respectively:

$$\begin{aligned} T=Id_3-\varvec{n}\cdot \varvec{n}^t= \left( \begin{array}{ccc} 1 &{} 0 &{} 0\\ 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) \quad and \quad \nabla ^2\phi = \left( \begin{array}{ccc} \phi _{uu} &{} \phi _{uv} &{} \phi _{uN}\\ \phi _{vu} &{} \phi _{vv} &{} \phi _{vN}\\ \phi _{Nu} &{} \phi _{Nv} &{} \phi _{NN} \end{array} \right) _{(\varvec{u},\varvec{v},\varvec{n})} \end{aligned}$$

The curvature tensor has then a simple expression in the normal frame:

$$\begin{aligned} E=\dfrac{T\cdot \nabla ^2\phi \cdot T}{\vert \phi _n\vert }= \left( \begin{array}{ccc} \tfrac{\phi _{uu}}{\vert \phi _n\vert } &{} \tfrac{\phi _{uv}}{\vert \phi _n\vert } &{} 0\\ \tfrac{\phi _{uv}}{\vert \phi _n\vert } &{} \tfrac{\phi _{vv}}{\vert \phi _n\vert } &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) _{(\varvec{u},\varvec{v},\varvec{n})} \end{aligned}$$
(12)

Its expression is far more complicated in an arbitrary basis \((\varvec{x},\varvec{y},\varvec{z})\) where we could not find eigenvectors. In the normal frame, main eigenvalues and corresponding eigenvectors of the curvature tensor are then found equal to:

$$\begin{aligned} \kappa _1= & {} K_h-\sqrt{\vert \kappa _h^2-\kappa _k\vert }\cdot \zeta \qquad \qquad \kappa _2 = K_h+\sqrt{\vert \kappa _h^2-\kappa _k\vert }\cdot \zeta \end{aligned}$$
(13)
$$\begin{aligned} \varvec{t_1}= & {} \dfrac{1}{D_1}\left[ \begin{array}{l} \phi _{uv}\\ \kappa _1\phi _n-\phi _{uu}\\ 0 \end{array} \right] _{\varvec{u},\varvec{v},\varvec{n}} \qquad \varvec{t_2} = \dfrac{1}{D_2}\left[ \begin{array}{l} \kappa _2\phi _n-\phi _{vv}\\ \phi _{uv}\\ 0 \end{array} \right] _{\varvec{u},\varvec{v},\varvec{n}} \end{aligned}$$
(14)

with \(\kappa _k=\tfrac{\phi _{uu}\phi _{vv}-\phi _{uv}^2}{\phi _n^2}\), \(\kappa _h=\tfrac{\phi _{uu}+\phi _{vv}}{2\vert \phi _n\vert }\), \(D_1=D_2=\sqrt{\phi _{uv}^2+(\kappa _1 \phi _n-\phi _{uu})^2}\) and \(\zeta =\pm 1\).

Since derivatives in the (\(\varvec{u},\varvec{v},\varvec{n}\)) basis are linked to the derivatives in the default basis (\(\varvec{x},\varvec{y},\varvec{z}\)) and coordinates of \(\varvec{u}\), \(\varvec{v}\), \(\varvec{n}\):

$$\begin{aligned} \phi _n= & {} \varvec{\nabla }\phi \cdot \varvec{n}=\phi _xn_x+\phi _yn_y+\phi _zn_z= \Vert \varvec{\nabla }\phi \Vert =\vert \phi _n\vert \end{aligned}$$
(15a)
$$\begin{aligned} \phi _{uv}= & {} \varvec{u}^t\cdot \nabla ^2\phi \cdot \varvec{v}= \phi _{xx}u_xv_x+\phi _{yy}u_yv_y+\phi _{zz}u_zv_z \nonumber \\+ & {} \phi _{xy}(u_xv_y+u_yv_x)+ \phi _{xz}(u_xv_z+u_zv_x)+\phi _{yz}(u_yv_z+u_zv_y)\end{aligned}$$
(15b)
$$\begin{aligned} \phi _{uu}= & {} \varvec{u}^t\cdot \nabla ^2\phi \cdot \varvec{u}\end{aligned}$$
(15c)
$$\begin{aligned} \phi _{vv}= & {} \varvec{v}^t\cdot \nabla ^2\phi \cdot \varvec{v} \end{aligned}$$
(15d)

Replacing \(\phi _n\), \(\phi _{uv}\), \(\phi _{uv}\) and \(\phi _{uv}\) into curvature expressions (2b), (3b) and making some formal simplication, we recover the intrinsic expressions of curvatures (2a), (3a) that are independent on the choice of \(\varvec{u},\varvec{v}\). To sum up, principal curvatures do not depend on the choice of (\(\varvec{u},\varvec{v}\)) whereas principal directions depend on their coordinates. A bad choice of (\(\varvec{u},\varvec{v}\)) may then conduct to null vectors and then bad estimations. To circumvent bad choices, we then propose a criteria on \(\zeta \) to ensure that \(\varvec{t_1}\) and \(\varvec{t_2}\) are non-null vectors in Sect. 1.

To better understand the role of the parameter \(\zeta \) in avoiding degeneracies, it is advised to compute curvatures and principal directions by hand with \(\zeta =\pm 1\) at \(u=v=0\) and \(n=|R|\) for the following case studies:

  • \(\phi (u,v,n)=u^2+n^2-R^2\) \(\Rightarrow \) cylinder of axis \(\varvec{v}\) that requires \(\zeta =+1\)

  • \(\phi (u,v,n)=R^2-u^2-n^2\) \(\Rightarrow \) cylinder of axis \(\varvec{v}\) that requires \(\zeta =-1\)

  • \(\phi (u,v,n)=v^2+n^2-R^2\) \(\Rightarrow \) cylinder of axis \(\varvec{u}\) that requires \(\zeta =-1\)

  • \(\phi (u,v,n)=R^2-v^2-n^2\) \(\Rightarrow \) cylinder of axis \(\varvec{u}\) that requires \(\zeta =+1\)

  • \(\phi (u,v,n)=\pm u*v+n\) \(\Rightarrow \) saddle shaped surface (\(\zeta =\pm 1\))

This work was granted access to the HPC resources of the RZG of the Max Planck Society made available within the Distributed European Computing Initiative by the PRACE-2IP, receiving funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n \(^{\circ }\) RI-283493. The research leading to these results has received funding from the European Research Council under the ERC grant agreement n \(^{\circ }\) 247322, GREENEST. The authors thank Xiang He for his help in code development and Bruno Denet for his feedback in using the GTS library.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Albin, E., Knikker, R., Xin, S., Paschereit, C.O., D’Angelo, Y. (2017). Computational Assessment of Curvatures and Principal Directions of Implicit Surfaces from 3D Scalar Data. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2016. Lecture Notes in Computer Science(), vol 10521. Springer, Cham. https://doi.org/10.1007/978-3-319-67885-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67885-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67884-9

  • Online ISBN: 978-3-319-67885-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics