Skip to main content

Nuclear and Molecular Imaging in Cerebral Palsy

  • Chapter
  • First Online:
Book cover Cerebral Palsy

Abstract

Nuclear or molecular imaging (N/MI) is a functional imaging method, which utilizes radiopharmaceuticals (RPHs) to prepare the patient and special detectors to map and measure the distribution of the administered RPHs inside the body. RPHs are biologically active molecules labeled with radioactive isotopes (or radionuclides). They target either normal tissues or specific pathology (e.g., tumors, infection, etc.) and are administered in absolutely safe and harmless small quantities. N/MI provides a noninvasive evaluation of patients with or at risk of developing cerebral palsy and predicts outcome of these patients. It has also an established role for the localization of seizure foci in epilepsy, which is present in approximately two fifths of patients with cerebral palsy. Novel PET tracers that are used in some neurological centers image gamma-aminobutyric acid (GABA) receptor with 18F-fluoroflumazenil and serotonin function with 11C-alpha-methyl-l-tryptophan, and these have the potential to become the standard of care in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thornberg E, Thiringer K, Odeback A, et al. Birth asphyxia: incidence, clinical course and outcome in a Swedish population. Acta Paediatr. 1995;84:927–32.

    Article  CAS  PubMed  Google Scholar 

  2. Thorngren-Jerneck K, Ohlsson T, Sandell A, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.

    Article  CAS  PubMed  Google Scholar 

  3. Robertson CM. Finer NM long-term follow-up of term neonates with perinatal asphyxia. Clin Perinatal. 1993;20:483–500.

    CAS  Google Scholar 

  4. Vannucci RC, Perlman JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics. 1997;100:1004–14.

    Article  CAS  PubMed  Google Scholar 

  5. Lebrun-Grandie P, Baron JC, Soussaline F, et al. Coupling between regional blood flow and oxygen utilization in the normal human brain. A study with positron tomography and oxygen 15. Arch Neurol. 1983;40:230–6.

    Article  CAS  PubMed  Google Scholar 

  6. Chugani WI, Phelps ME, Maciona JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97.

    Article  CAS  PubMed  Google Scholar 

  7. Chiron C, Raynaud C, Maziere B, et al. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33:696–703.

    CAS  PubMed  Google Scholar 

  8. Kinnala A, Suhonen-Polvi H, Aarimaa T, et al. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study. Arch Dis Child Fetal Neonatal Ed. 1996;74:F153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Powers WJ, Rosenbaum JL, Dence CS, et al. Cerebral glucose transport and metabolism in preterm human infants. J Cereb Blood Flow Metab. 1998;18:632–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lee JD, Kim DI, Ryu YH, et al. Technetium-99m-ECD brain SPECT in cerebral palsy: comparison with MRI. J Nucl Med. 1998;39:619.

    CAS  PubMed  Google Scholar 

  11. Shah S, Fernandez AR, Chirla D, et al. Role of brain SPECT in neonates with hypoxic ischemic encephalopathy and its correlation with neurodevelopmental outcome. Indian Pediatr. 2001;38:705–13.

    CAS  PubMed  Google Scholar 

  12. Vandermeeren Y, Olivier E. G et al. increased FDG uptake in the ipsilesional sensorimotor cortex in congenital hemiplegia. NeuroImage. 2002;15:949–60.

    Article  PubMed  Google Scholar 

  13. Denays R, VanPacherbeke T, Topper V, et al. Prediction of cerebral palsy in high-risk neonates: a technetium-99m-HMPAO SPECT study. J Nucl Med. 1993;34:1223–7.

    CAS  PubMed  Google Scholar 

  14. Kerrigan JE, Chugani HT, Phelps ME. Regional cerebral glucose metabolism in clinical subtypes of cerebral palsy. Pediatr Neurol. 1991;7:415–25.

    Article  CAS  PubMed  Google Scholar 

  15. Denays R, Tondeur M, Toppet V, et al. Cerebral palsy: initial experience with 99mTc HMPAO SPECT or the brain. Radiology. 1990;175:111–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yin SY, Lee IY, Park CM, Kim OH. A qualitative analysis of brain SPECT for prognostication of gross motor development in children with cerebral palsy. Clin Nucl Med. 2000;25:268–72.

    Article  Google Scholar 

  17. Pods O, Greisen G, Lou H, Friis-Hansen B. Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr. 1990;117:119–25.

    Article  Google Scholar 

  18. Blennow M. Ingvar MLagercrant: H et al. early I [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr. 1995;84:1289–95.

    Article  CAS  PubMed  Google Scholar 

  19. Barista CE, Chugani HT, Juhasz C, et al. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatr Neurol. 2007;36:330–3.

    Article  Google Scholar 

  20. Valkama AM, Ahonen A, Vainionpaa L, et al. Brain single photon emission computed tomography at term age for predicting cerebral palsy after preterm birth. Biol Neonate. 2001;79:27–33.

    Article  CAS  PubMed  Google Scholar 

  21. Kang M, Min K, Kim SC, et al. Involvement of immune responses in the efficacy of cord blood cell therapy for cerebral palsy. Stem Cells Dev. 2015;24:2259–68.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma A, Sane H, Kulkarni P, D’sa M, Gokulchandran N, Badhe P. Improved quality of life in a case of cerebral palsy after bone marrow mononuclear cell transplantation. Cell J. 2015;17:389–94.

    PubMed  PubMed Central  Google Scholar 

  23. Sharma A, Sane H, Paranjape A, et al. Positron emission tomography-computer tomography scan used as a monitoring tool following cellular therapy in cerebral palsy and mental retardation – a case report. Case Rep Neurol Med. 2013;2013:141983.

    PubMed  PubMed Central  Google Scholar 

  24. Kannan S, Chugani HE. Applications of positron emission tomography in the newborn nursery. Semin Perinatol. 2010;34:3945.

    Article  Google Scholar 

  25. National Council on Radiation Protection and Measurements: Ionizing radiation exposure of the population of the United States. NCRP Report. 93, Bethesda, MD: National Council on Radiation Protection and Measurements; 1987.

    Google Scholar 

  26. Christensen D, Van Naarden Braun K, Doernberg NS, et al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - autism and developmental disabilities monitoring network, USA, 2008. Dev Med Child Neurol. 2014;56:59–65.

    Article  PubMed  Google Scholar 

  27. Blume WT. Diagnosis and management of epilepsy. CMAJ. 2003;168:441–8.

    PubMed  PubMed Central  Google Scholar 

  28. Kelvin EA, Hesdorffer DC, Bagiella E, et al. Prevalence of self-reported epilepsy in a multiracial and multiethnic community in New York city. Epilepsy Res. 2007;77:141–50.

    Article  PubMed  Google Scholar 

  29. Sinhi P, Jagirdar S, Khandelwal N, Malhi P. Epilepsy in children with cerebral palsy. J Child Neurol. 2003;18:174–9.

    Article  Google Scholar 

  30. Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005-2009. Epilepsia. 2010;51:676–85.

    Article  PubMed  Google Scholar 

  31. Uijl SG, Leijten FS, Arends JB, Parra J, van Huffelen AC, Moons KG. The added value of [18F]-fluoro-d-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery. Epilepsia. 2007;48:2121–9.

    Article  PubMed  Google Scholar 

  32. Kumar A, Chugani HT. The role of radionuclide imaging in epilepsy, part 1: sporadic temporal and extratemporal lobe epilepsy. J Nucl Med. 2013;54:1775–81.

    CAS  PubMed  Google Scholar 

  33. Hoogaard K, Oikawa T, Sveinsdottir E, Skinoj E, Ingvar DH, Lassen NA. Regional cerebral blood blow in focal cortical epilepsy. Arch Neurol. 1976;33:527–35.

    Article  Google Scholar 

  34. Prince DA, Wilder BJ. Control mechanism in cortical epileptogenic foci: “surround” inhibition. Arch Neurol. 1967;16:194–202.

    Article  CAS  PubMed  Google Scholar 

  35. Lee JD, Park W, Parkes ES, et al. Assessment of regional GABA(a) receptor binding using 18F-fluoronumazenil positron emission tomography in spastic type cerebral palsy. NeuroImage. 2007;34:19–25.

    Article  PubMed  Google Scholar 

  36. Park HJ, Kim CH, Park ES, et al. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging. J Nucl Med. 2013;54:1263–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kannan S, Saadani-Makki F, Balakrishnan B, et al. Magnitude of [(11)C]PK11195 binding is related to severity of motor deficits in a rabbit model of cerebral palsy induced by intrauterine endotoxin exposure. Dev Neurosci. 2011;33:231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holodi M, Topakian R, Pichler R. 18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy. Radiol Oncol. 2016;50:247–53.

    Google Scholar 

  39. Ryvlin P, Bouvard S, Le Bars D, et al. Clinical utility of flumazenil-PET versus 18F fluodeoxyglucose-PET and MRI in refractory partial epilepsy: a prospective study in 100 patients. Brain. 1998;121:2067–81.

    Article  PubMed  Google Scholar 

  40. Juhasz C, Nagy F, Muzik O, et al. Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology. 2003;60:960–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Hickeson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hickeson, M., Sfakianaki, E. (2018). Nuclear and Molecular Imaging in Cerebral Palsy. In: Panteliadis, C. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-67858-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67858-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67857-3

  • Online ISBN: 978-3-319-67858-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics