New Governance Challenges and Conflicts of the Energy Transition: Renewable Electricity Generation and Transmission as Contested Socio-technical Options

  • Fritz Reusswig
  • Nadejda Komendantova
  • Antonella Battaglini
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 61)

Abstract

The emergence of renewable energy sources (RES) has broadened the scope of socio-technical options for energy systems. While the conventional fossil-nuclear system has been a highly centralized one, both technological and in economic respects, RES can be implemented in a highly decentralized manner—but can also fit to the traditional centralized pathway. This new option space is associated with many conflicts. The paper reconstructs one basic conflict by conceptualizing future energy options as a strategic action field with incumbents and challengers as stylized key actors. We illustrate this approach by various cases from Germany, Austria, the Mediterranean, and China. The paper argues against a popular stylization of the strategic action field of RES along the dichotomy of centralized versus decentralized options and sketches a mixed future as the more plausible—and more desirable—one. The paper ends by sketching the design of a global super smart grid as the backbone for such a mixed option.

Keywords

Energy transition Energy conflicts Socio-technical options Strategic action field Super smart grid 

References

  1. Bast, E., Doukas, A., Pickard, S., van der Burg, L., & Whitley, S. (2015). Empty promises: G20 subsidies to oil, gas and coal production. London/Washington, DC. http://priceofoil.org/content/uploads/2015/11/empty_promises_full_report_update.pdf.
  2. Bernhagen, P., Dür, A., & Marshall, D. (2015). Information or context: What accounts for positional proximity between the European Commission and lobbyists? Journal of European Public Policy, 22(4).Google Scholar
  3. Bloomberg New Energy Finance (BNEF). (2017). Global Trends in Renewable Energy Investment 2017. Frankfurt School-UNEP Centre Frankfurt. http://www.fs-unep-centre.org.
  4. BMWF. (2010). National renewable energy action plan 2010 for Austria (NREAP-AT) under Directive 2009/28/EC of the European Parliament and of the Council. Family and Youth, Vienna: Federal Ministry of Economy.Google Scholar
  5. Bramreiter, R., Truger, R., Schinko, T., & Bednar-Friedl, B. (2016). Identification of economic and energy framework conditions of the Austrian climate and energy model regions. LINKS Working Paper 1.1. 16 March 2016.Google Scholar
  6. Bromley, P. (2016). Extraordinary interventions: Toward a framework for rapid transition and deep emission reductions in the energy space. Energy Research and Social Science, 22, 165–171.CrossRefGoogle Scholar
  7. CAT. (2017). China. Climate Action Tracker. http://climateactiontracker.org/countries/china.html.
  8. COM. (2014). Communication from the Commission to the European Parliament and the Council. European Energy Security Strategy. COM (2014) 330 final. Brussels: European Commission.Google Scholar
  9. Czisch, G. (2005). Szenarien zur zukünftigen Stromversorgung: Kostenoptimierte Variationen zur Versorgung Europas und seiner Nachbarn mit Strom aus erneuerbaren Energien. PhD thesis. Faculty of Electrical Engineering and Computer Science, University of Kassel.Google Scholar
  10. Devine-Wright, P. (Ed.). (2011). Renewable energy and the public. From NIMBY to participation. London/Washington, D.C.: Earthscan.Google Scholar
  11. Etscheit, G. (Ed.). (2016). Geopferte Landschaften. Wie die Energiewende unsere Umwelt zerstört. München: Heyne.Google Scholar
  12. Fligstein, N., & McAdam, D. (2011). Toward a general theory of strategic action fields. Sociological Theory, 29(1), 1–26.CrossRefGoogle Scholar
  13. Fligstein, N., & McAdam, D. (2012). A theory of fields. Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. FMEE. (2016). Renewable energy sources in figures. National and international development, 2015. Federal Ministry for Economic Affairs and Energy. https://www.bmwi.de/Redaktion/EN/Publikationen/renewable-energy-sources-in-figures.pdf?__blob=publicationFile&v=13.
  15. Fouquet, R. (2016). Historical energy transitions: Speed, prices and system transformation. Energy Research and Social Science, 22, 7–12.CrossRefGoogle Scholar
  16. GEA. (2012). Global energy assessment—Toward a sustainable future. International Institute for Applied Systems Analysis, Vienna, Austria and Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
  17. Grin, J., Rotmans, J., & Schot, J. (2010). Transitions to sustainable development. New directions in the study of long term transformative change. London: Routledge.Google Scholar
  18. Gross, M., & Mautz, R. (2015). Renewable energies. London/New York: Routledge.Google Scholar
  19. Hoeft, C., Messinger-Zimmer, S., & Zilles, J. (Eds.). (2017). Bürgerproteste in Zeiten der Energiewende. Lokale Konflikte um Windkraft, Stromtrassen und Fracking (pp. 235–254). Bielefeld: transcript.Google Scholar
  20. Hughes, T. (1983). Networks of power. Baltimore: Johns Hopkins University Press.Google Scholar
  21. Hughes, T. (1987). The evolution of large technological systems. In The social construction of technological systems. In W. E. Bijker, T. P. Hughes, & T. J. Pinch (Eds.), New directions in the sociology and history of technology. Cambridge, MA/London: The MIT Press.Google Scholar
  22. Komendantova, N., & Battaglini, A. (2016). Beyond Decide-Announce-Defend (DAD) and Not-in-My-Backyard (NIMBY) models? Addressing the social and public acceptance of electric transmission lines in Germany. Energy Research and Social Science, 22, 224–231.CrossRefGoogle Scholar
  23. Komendantova, N., Riegler, M., & Neumueller, S. (in review). The Austrian climate and energy models (CEM) process as a path to energy transition: How easy is it to engage local people? Submitted to Energy Research and Social Science.Google Scholar
  24. Kunreuther H., Gupta, S., Bosetti, V., Cooke, R., Dutt, V., Ha-Duong, M., et al. (2014). Integrated risk and uncertainty assessment of climate change response policies. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth et al. (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group iii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  25. Lüdeke-Freund, F., & Opel, O. (2014). Die Energiewende als transdisziplinäre Herausforderung [The Energiewende as a transdisciplinary challenge]. In H. Heinrichs & G. Michelsen (Eds.), Nachhaltigkeitswissenschaften [Sustainability science] (pp. 429–454). Berlin and Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  26. McCright, A. M., & Dunlap, R. E. (2003). Defeating Kyoto: The conservative movement’s impact on US climate change policy. Social Problems, 50, 348–373.CrossRefGoogle Scholar
  27. Ney, S. (2009). Resolving messy policy problems. London: EarthScan Publications.Google Scholar
  28. REN. (2017). Acceptance of renewable energy in Germany. Renewable Energy agency. https://www.unendlich-viel-energie.de/english/acceptance-of-renewable-energy-in-germany.
  29. Reusswig, F., Braun, F., Heger, I., Ludewig, T., Eichenauer, E., & Lass, W. (2016). Against the wind: Local opposition against the German ‘Energiewende’. Utilities Policy, 41(C), 214–227.Google Scholar
  30. Riegler, M., Vogler, C., Neumueller, S., & Komendantova, N. (2017). Engaging inhabitants into energy transition in climate and energy model (CEM) regions: Case studies of Freistadt, Ebreichsdorf and Baden. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-17-003.Google Scholar
  31. Schäfer, M., Kebir, N., & Philipp, D. (Eds.). (2013). Micro perspectives for decentralized energy supply. In Proceedings of the International Conference. Berlin: Technical University. https://www.tu-berlin.de/fileadmin/FG/LBP/proceedings_MPDES_2013.pdf.
  32. Schmid, E., Pechan, A., Mehnert, M., & Eisenack, K. (2017). Imagine all these futures: On heterogeneous preferences and mental models in the German energy transition. Energy Research and Social Science, 27, 45–56.CrossRefGoogle Scholar
  33. TERIM. (2014). Transition dynamics in energy regions: An integrated model for sustainable policies. Climate and Energy Funds: Publizierbarer Endbericht.Google Scholar
  34. Truger, R., Bramreiter, R., Riegler, M., Schinko, T., Bednar-Friedl, B., & Komendatova, N. (2016). Scoping study: The history and current context of the model region concept and identification of case study regions. Links Working Paper 1.2.Google Scholar
  35. Unruh, G. (2000). Understanding carbon lock-in. Energy Policy, 28, 817–830.CrossRefGoogle Scholar
  36. Unruh, G., & Carillo-Hermosilla, J. (2006). Globalizing carbon lock-in. Energy Policy, 34, 1185–1197.CrossRefGoogle Scholar
  37. WBGU. (2011). World in transition. A social contract for sustainability. Flagship Report. German Advisory Council on Global Change, Berlin.Google Scholar
  38. Xavier, R., Komendantova, N., Jarbandhan, V., & Nell, D. (2017). Participatory governance in the transformation of the South African energy sector: Critical success factors for environmental leadership. Journal of Cleaner Production, 1–44.  https://doi.org/10.1016/j.jclepro.2017.03.146.
  39. Yergin, D. (2006). Ensuring energy security. Foreign Affairs, 69–82.Google Scholar
  40. Zhenya, L. (2015). Global energy interconnection (1st ed.). Academic Press. ISBN:9780128044056.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fritz Reusswig
    • 1
  • Nadejda Komendantova
    • 2
    • 3
  • Antonella Battaglini
    • 4
    • 1
  1. 1.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  3. 3.Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
  4. 4.Renewables Grid Initiative (RGI)BerlinGermany

Personalised recommendations