Connecting Visions of a Future Renewable Energy Grid

  • Marloes Dignum
Part of the Lecture Notes in Energy book series (LNEN, volume 61)


Our fossil fuel energy system is in transition towards a renewable energy infrastructure. This implies that it is changing fundamentally into a new system with other institutional arrangements, infrastructures, habits, and routines. This chapter focuses on the institutional and infrastructure developments related to this transition. The Third Energy Package aimed to create one single EU electricity market. This implies that the level of high voltage lanes and the level of solar panels on the roofs of homes are parts of a single future EU electricity market. This chapter assesses how these different levels develop and whether and how synergy is created. To do so, this chapter analyses the visions of a future renewable electricity system and maps those against actual developments. It concludes that renewable energy developments on the different levels are rapidly ongoing without reflectivity regarding the consequences of design choices on the long-term. Short-term policy ambitions guide these developments. Embedding in a wider and coherent vision could facilitate more deliberate action. Distributed and centralized aspects of the electricity system need integration. The short-term developments do not necessarily result in the best system on the long-term. The guidance and reflection of a vision can help to identify relevant actors, coordination issues, and help to deliver a more robust renewable future energy system.


Visions Distributed energy Centralized energy Renewable energy 



The author would like to thank Rick Bosman and Daniel Scholten for their comments on an earlier version of this paper. This publication is funded by the Dutch Organisation of Scientific research (NWO) [Grantnumber: 408-13-029].


  1. Achterhuis, H. (1998). De erfenis van de utopie. Amsterdam: Ambo.Google Scholar
  2. Alanne, K., & Saari, A. (2006). Distributed energy generation and sustainable development. Renewable and Sustainable Energy Reviews, 10, 539–558.CrossRefGoogle Scholar
  3. Arentsen, M., & Bellekom, S. (2014). Power to the people: Local energy initiatives as seedbeds of innovation? Energy, Sustainability and Society, 4(1), 1–12.CrossRefGoogle Scholar
  4. Bakker, S. (2011). Competing expectations; The case of the hydrogen car. PhD thesis, Utrecht University. Oisterwijk: BOXPress. Google Scholar
  5. Battaglini, A., Lilliestam, J., Haas, A., & Patt, A. (2009). Development of supersmart grids for a more efficient utilisation of electricity from renewable sources. Journal of Cleaner Production, 17(10), 911–918.CrossRefGoogle Scholar
  6. Borup, M., Brown, N., Konrad, K., & van Lente, H. (2006). The Sociology of expectations in science and technology. Technology Analysis & Strategic Management, 18(3–4), 285–298.CrossRefGoogle Scholar
  7. Brown, N., Rappert, B., & Webster, A. (Eds.). (2000). Contested futures: A sociology of prospective techno-science. Aldershot, England: Ashgate Publishing Company.Google Scholar
  8. Centraal Bureau voor de Statistiek (CBS). (2016). Elektriciteitsproductie uit steenkool opnieuw hoger. News report, June 28. Accessed June 18, 2017.
  9. Centraal Bureau voor de Statistiek (CBS). (2017a). Hernieuwbare elektriciteit: productie en vermogen. Statline.,5-10&D3=23-25&VW=T. Accessed June 18, 2017.
  10. Centraal Bureau voor de Statistiek (CBS). (2017b). Windenergie; elektriciteitsproductie, capaciteit en windaanbod per maand. Accessed June 18, 2017.
  11. Correljé, A., & Verbong, G. (2004). The Transition from coal to gas: Radical change of the Dutch gas system. In B. Elzen, F. Geels, & K. Green (Eds.), System innovation and the transition to sustainability: Theory, evidence and policy (pp. 114–134). Cheltenham U.K.: Edward Elgar Publishing.Google Scholar
  12. Devine-Wright, P. (2011). Renewable energy and the public. New York: Taylor&Francis.Google Scholar
  13. Dignum, M. (forthcoming). Urban Platform Intermediaries and the Governance of the Energy Transition, In M. van Geenhuizen, A. Holbrook, & M. Taheri (Eds.), Cities and sustainable technology transitions: Leadership, innovation and adoption. Cheltenham U.K.: Edward Elgar.Google Scholar
  14. Dignum, M. (2013). The power of large technological visions; the promise of hydrogen energy (1970-2010). PhD Thesis, Eindhoven University of Technology. Boxtel: Boxpress.Google Scholar
  15. Dutch Parliament. (2017). Motie van het lid van Tongeren c.s. over het aanpassen van de energieagenda overeenkomstig aangenomen moties, February 7, Accessed June 18, 2017.
  16. European Commission (EC). (2012). Energy roadmap 2050. Accessed September 8, 2017.
  17. European Commission (EC). (2014). Study of the benefits of a meshed offshore grid in the northern seas region. Final Report. Directorate-General for Energy, Luxembourg. Accessed September 8, 2017.
  18. Geels, F. W. (2014). Regime resistance against low carbon transitions: Introducing politics and power into the multi-level perspective. Theory, Culture and Society, 31(5), 21–40.CrossRefGoogle Scholar
  19. Goldthau, A. (2014). Rethinking the governance of energy infrastructure: Scale, decentralization and polycentrism. Energy Research & Social Science, 1, 134–140.CrossRefGoogle Scholar
  20. Grin, J. (2000). Vision assessment to supporting shaping the 21st century society? Technology assessment as a tool for political judgement. In J. Grin & A. Grunwald (Eds.), Vision assessment: Shaping technology in 21st century society. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
  21. Harris, D., Bazelon, C., Humphreys, B., & Dickson, P. (2010). Economic impact of the Dutch gas hub strategy on The Netherlands. Ministry of Economic Affairs, Agriculture and Innovation by the Brattle Group. Accessed June 18, 2017.
  22. Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A. F., Goodman, S. C., Chapman, W. E., Cameron, M. A., et al. (2017). 100% Clean and Renewable Wind, Water, and Sunlight (WWS) All-Sector Energy Roadmaps for 139 Countries of the World. Stanford. Accessed June 8, 2017.
  23. Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 144(1), 280–294.CrossRefGoogle Scholar
  24. Klein, S. J. W., & Coffey, S. (2016). Building a sustainable energy future, one community at a time. Renewable and Sustainable Energy Reviews, 60, 867–880.CrossRefGoogle Scholar
  25. Lilliestam, J., & Hanger, S. (2016). Shades of green: Centralisation, decentralisation and controversy among European renewable electricity visions. Energy Research & Social Science, 17, 20–29.CrossRefGoogle Scholar
  26. Mehos, D. C. (2016). Toward a transnational North Sea meshed grid. Working Paper FLOW project. Delft University of Technology.Google Scholar
  27. Michael, M. (2000). Futures of the present: From performativity to prehension. In N. Brown, B. Rappert, & A. Webster (Eds.), Contested futures: A sociology of prospective techno-science (pp. 21–39). Aldershot, England: Ashgate Publishing Company.Google Scholar
  28. Ministry of Economic Affairs. (2016a). Energieagenda: Naar een CO2- arme energievoorziening in 2050. Accessed July 31, 2017.
  29. Ministry of Economic Affairs. (2016b). Windpark Borssele goedkoopste ter wereld. Announcement 05, July 2016. Accessed June 18, 2017.
  30. Müller, H. K. (2015). A legal framework for a transnational offshore grid in the North Sea. PhD Thesis, University of Groningen.Google Scholar
  31. North, D. C. (1991). Institutions. The Journal of Economic Perspectives, 5(1), 97–112.CrossRefGoogle Scholar
  32. NSCOGI. (2012). The North Seas countries’ offshore grid initiative. Accessed September 1, 2017.
  33. Netherlands Enterprise Agency (RVO). (2015a). Overview: Offshore wind: kansen op de international markt. Accessed June 18, 2017.
  34. Netherlands Enterprise Agency (RVO). (2015b). Offshore wind energy in the Netherlands. Accessed June 18, 2017.
  35. Orehounig, K., Mavromatidis, G., Dorer, V., & Carmeliet, J. (2014). Towards an energy sustainable community: An energy system analysis for a village in Switzerland. Energy and Buildings, 84, 277–286.CrossRefGoogle Scholar
  36. Schwencke, A. M. (2016). Nationale energie monitor. Hier Opgewekt. Accessed September 3, 2017.
  37. Social-Economic Council of the Netherlands (SER). (2013). Agreement on energy for sustainable growth. Accessed June 18, 2017.
  38. Social-Economic Council of the Netherlands (SER). (2016a). Agreement on energy for sustainable growth; Progress report. Accessed June 18, 2017.
  39. Social-Economic Council of the Netherlands (SER). (2016b). Factsheet wind op zee. Accessed June 18, 2017.
  40. Seyfang, G., & Haxeltine, A. (2012). Growing grassroots innovations: Exploring the role of community-based initiatives in governing sustainable energy transitions. Environment and Planning C: Government and Policy, 30(3), 381–400.CrossRefGoogle Scholar
  41. Van der Schoor, T., van Lente, H., Scholtens, B., & Peine, A. (2016). Challenging obduracy: How local communities transform the energy system. Energy Research & Social Science, 13, 94–105.CrossRefGoogle Scholar
  42. Van der Schoor, T., & Scholtens, B. (2015). Power to the people: Local community initiatives and the transition to sustainable energy. Renewable and Sustainable Energy Reviews, 43, 666–675.CrossRefGoogle Scholar
  43. Van Lente, H. (1993). Promising technology; The dynamics of expectations in technological developments. PhD Thesis, Twente University.Google Scholar
  44. Van Lente, H. (2000). Forceful futures: From promise to requirement. In N. Brown, B. Rappert, & A. Webster (Eds.), Contested futures: A sociology of prospective techno-science (pp. 43–64). Aldershot, England: Ashgate Publishing Company.Google Scholar
  45. Van Lente, H., & Bakker, S. (2010). Competing expectations: The case of hydrogen storage technologies. Technology Analysis & Strategic Management, 11(6), 693–709.CrossRefGoogle Scholar
  46. Van Lente, H., & Rip, A. (1998). The rise of membrane technology: From rhetorics to social reality. Social Studies of Science, 28(2), 221–254.CrossRefGoogle Scholar
  47. Van Nerven, J., Vrijhoef, D., Willems, R., Inderdjiet, A., Kluver, M., & Sterk, R. (2017). Vervolgroutekaart windenergie op zee. Joint initiative of the Ministry of Economic Affairs, Ministry of Infrastructure and Environment, Netherlands Enterprise Agency, Rijkswaterstaat, TenneT, Nature and Environment, and the Dutch Wind Energy Association. Accessed June 18, 2017.
  48. Wieczorek, A. J., Hekkert, M. P., Coenen, L., & Harmsen, R. (2015). Broadening the national focus in technological innovation system analysis: The case of offshore wind. Environmental Innovation and Societal Transitions, 14, 128–148.CrossRefGoogle Scholar
  49. Wieczorek, A. J., Negro Simona, O., Harmsen, R., Heimeriks, G. J., Luo, L., & Hekkert, M. P. (2013). A review of the European offshore wind innovation system. Renewable and Sustainable Energy Reviews, 26, 294–306.CrossRefGoogle Scholar
  50. Woolley, O. A., Schaumberg, P., & St. Michel, G. (2012). Establishing an offshore grid: A legal analysis of grid developments in the North Sea and in US waters. In M. Roggenkamp, L. Barrera-Hernandez, D. Zillman, & I. del Guayo (Eds.), Energy networks and the law: Innovative solutions in changing markets (pp. 180–204). Oxford: Oxford University Press.CrossRefGoogle Scholar
  51. Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Thousand Oaks: SAGE Inc.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftNetherlands

Personalised recommendations