Advertisement

One-Chip Micro-NMR Platform with B0-Field Stabilization

  • Ka-Meng Lei
  • Pui-In Mak
  • Man-Kay Law
  • Rui Paulo Martins
Chapter

Abstract

We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension, 14 × 6 × 11 cm3; weight, 1.4 kg), the system is capable of detecting <100 pM of Enterococcus faecalis-derived DNA from a 2.5-μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18-μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates (1) selective biological target pinpointing (2) protein state analysis, and (3) solvent-polymer dynamics, suitable for healthcare, food, and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120×), hardware volume (175×), and weight (96×).

Keywords

Biological Biosensor Chemical CMOS Deoxyribonucleic acid (DNA) Immunoglobulin Lab-on-a-chip Magnetic sensing Nuclear magnetic resonance (NMR) Point-of-care Polymer Protein Radio frequency (RF) Receiver (RX) Transceiver (TRX) Transimpedance amplifier (TIA) Transmitter (TX) 

References

  1. 1.
    D. Ha, J. Paulsen, N. Sun, Y.Q. Song, D. Ham, Scalable NMR spectroscopy with semiconductor chips. Proc. Natl. Acad. Sci. 111(33), 11955–11960 (2014)CrossRefGoogle Scholar
  2. 2.
    G.A. Morris, H. Barjat, T.J. Horne, Reference deconvolution methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(1), 197–257 (1997)CrossRefGoogle Scholar
  3. 3.
    E. Kupce, R. Freeman, Molecular structure from a single NMR sequence (fast-PANACEA). J. Magn. Reson. 206(1), 147–153 (2010)CrossRefGoogle Scholar
  4. 4.
    N. Sun, T.J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham, Palm NMR and 1-chip NMR. IEEE J. Solid State Circuits 46(1), 342–352 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Jiang, K. Makinwa, A hybrid multipath CMOS magnetic sensor with 210μTrms resolution and 3MHz bandwidth for contactless current sensing, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2016, pp. 204–205Google Scholar
  6. 6.
    J.F. Jiang, W.J. Kindt, K.A.A. Makinwa, A continuous-time ripple reduction technique for spinning-current Hall sensors. IEEE J. Solid State Circuits 49(7), 1525–1534 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Heidari, E. Bonizzoni, U. Gatti, F. Maloberti, A CMOS current-mode magnetic Hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I, Reg. Papers 62(5), 1270–1278 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G.M. Sung, C.P. Yu, 2-D differential folded vertical Hall device fabricated on a p-type substrate using CMOS technology. IEEE Sensors J. 13(6), 2253–2262 (2013)CrossRefGoogle Scholar
  9. 9.
    C. Sander, M.C. Vecchi, M. Cornils, O. Paul, From three-contact vertical Hall elements to symmetrized vertical Hall sensors with low offset. Sens. Actuators A 240, 92–102 (2016)CrossRefGoogle Scholar
  10. 10.
    K.M. Lei, H. Heidari, P.I. Mak, M.K. Law, F. Maloberti, Exploring the noise limits of fully-differential micro-watt transimpedance amplifiers for Sub-pA/√Hz sensitivity, in 11th Conference on Ph.D. Research in Microelectronics and Electronicss (PRIME), 2015, pp. 290–293Google Scholar
  11. 11.
    D. Kim, B. Goldstein, W. Tang, F.J. Sigworth, E. Culurciello, Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(1), 52–62 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Crescentini, M. Bennati, M. Carminati, M. Tartagni, Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans. Biomed. Circuits Syst. 8(2), 278–292 (2014)CrossRefGoogle Scholar
  13. 13.
    K.N. Leung, P.K.T. Mok, Analysis of multistage amplifier-frequency compensation. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(9), 1041–1056 (2001)CrossRefGoogle Scholar
  14. 14.
    Datasheet of NMR permanent magnet PM-1055, Available: http://metrolab.com/wp-content/uploads/2015/07/PM1055_broch.pdf. Accessed 30 Jan 2016
  15. 15.
    C. Min, H.L. Shao, M. Liong, T.J. Yoon, R. Weissleder, H. Lee, Mechanism of magnetic relaxation switching sensing. ACS Nano 6(8), 6821–6828 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Indrawati, R.L. Stroshine, G. Narsimhan, Low-field NMR: a tool for studying protein aggregation. J. Sci. Food Agric. 87(12), 2207–2216 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Sierra-Martin, J.R. Retama, M. Laurenti, A.F. Barbero, E.L. Cabarcos, Structure and polymer dynamics within PNIPAM-based microgel particles. Adv. Colloid Interf. Sci. 205, 113–123 (2014)CrossRefGoogle Scholar
  18. 18.
    D.H. Gultekin, J.C. Gore, Temperature dependence of nuclear magnetization and relaxation. J. Magn. Reson. 172(1), 133–141 (2005)CrossRefGoogle Scholar
  19. 19.
    L. Vermeir, M. Balcaen, P. Sabatino, K. Dewettinck, P. Van der Meeren, Influence of molecular exchange on the enclosed water volume fraction of W/O/W double emulsions as determined by low-resolution NMR diffusometry and T-2-relaxometry. Colloids Surf. A Physicochem. Eng. Asp. 456(1), 129–138 (2014)CrossRefGoogle Scholar
  20. 20.
    Bruker minispec contrast agent analyzer, Available: https://www.bruker.com/products/mr/td-nmr/minispec-mq-series/mq-contrast-agent-analyzer/overview.html. Accessed 30 Jan 2016
  21. 21.
    B. Jang, P. Cao, A. Chevalier, A. Ellington, A. Hassibi, A CMOS fluorescent-based biosensor microarray, in International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2009, pp. 436–437Google Scholar
  22. 22.
    K.H. Lee, S. Choi, J.O. Lee, J.B. Yoon, G.H. Cho, CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection, in International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2012, pp. 120–122Google Scholar
  23. 23.
    H. Jafari, L. Soleymani, R. Genov, 16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs. IEEE Trans. Biomed. Circuits Syst. 6(5), 468–478 (2012)CrossRefGoogle Scholar
  24. 24.
    P.H. Kuo, J.C. Kuo, H.T. Hsueh, J.Y. Hsieh, Y.C. Huang, T. Wang, et al., A smart CMOS assay SoC for rapid blood screening test of risk prediction. IEEE Trans. Biomed. Circuits Syst. 9(6), 790–800 (2015)Google Scholar
  25. 25.
    D.A. Hall, R.S. Gaster, K.A.A. Makinwa, S.X. Wang, B. Murmann, A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS. IEEE J. Solid State Circuits 48(5), 1290–1301 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Sun, Y. Liu, H. Lee, R. Weissleder, D. Ham, CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid State Circuits 44(5), 1629–1643 (2009)CrossRefGoogle Scholar
  27. 27.
    K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld 50pM-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays, in International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2016, pp. 474–475Google Scholar
  28. 28.
    K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J. Solid State Circuits 52(1), 284–297 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ka-Meng Lei
    • 1
  • Pui-In Mak
    • 2
  • Man-Kay Law
    • 1
  • Rui Paulo Martins
    • 2
    • 3
  1. 1.State-Key Laboratory of Analog and Mixed-Signal VLSIUniversity of MacauMacauChina
  2. 2.State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECEUniversity of MacauMacauChina
  3. 3.Instituto Superior Técnico Universidade de LisboaLisbonPortugal

Personalised recommendations