Advertisement

Introduction

  • Ka-Meng Lei
  • Pui-In Mak
  • Man-Kay Law
  • Rui Paulo Martins
Chapter

Abstract

An essential part to evaluate the success of global health is the access to appropriate diagnostic tools [1]. A commendable diagnostic tool should be able to identify the disease occurred from the individuals rapidly. Especially for the infectious diseases, the turnaround time (TAT) for the diagnosis strongly affects their exacerbation level to the community. In vitro diagnostic (IVD) tool is aimed to offer a comfortable diagnosis for the patients, by taking only small specimens from the human body, e.g., blood, urine, or sputum, for analysis. Consequently, technologies enabling effective in vitro diagnosis become highly attractive for both developed and developing countries [2]. Tremendous efforts have been geared toward developing clinical-level IVD tools. Despite achieving high accuracy, the resulting TAT can be too long for diagnoses of contagious diseases like Ebola and SARS in the rural area, and the requisite of skillful operators and sophisticated equipment to perform the assays can dramatically raise the cost of the assay.

References

  1. 1.
    D.C.H. Burgess, J. Wasseramn, C.A. Dahl, Global health diagnostics. Nature (suppl. 1) 444, 1–2 (2006)Google Scholar
  2. 2.
    P. Yager, G.J. Domingo, J. Gerdes, Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10(1), 107–144 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Zuiderwijk, H.J. Tanke, R. Sam Niedbala, P.L.A.M. Corstjens, An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology. Clin. Biochem. 36(5), 401–403 (2003)CrossRefGoogle Scholar
  4. 4.
    X. Fu, Z. Cheng, J. Yu, P. Choo, L. Chen, J. Choo, A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron. 78, 530–537 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Li, J. Macdonald, Multiplex lateral flow detection and binary encoding enables a molecular colorimetric 7-segment display. Lab Chip 16(2), 242–245 (2016)CrossRefGoogle Scholar
  6. 6.
    J.R. Choi, J. Hu, R. Tang, Y. Gong, S. Feng, H. Ren, et al., An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip 16(3), 611–621 (2016)CrossRefGoogle Scholar
  7. 7.
    M. La, S.M. Park, D.S. Kim, Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays. Biomicrofluidics 9(1), 014104 (2015)CrossRefGoogle Scholar
  8. 8.
    B.S. Lee, Y.U. Lee, H.-S. Kim, T.-H. Kim, J. Park, J.-G. Lee, et al., Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11(1), 70–78 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Park, V. Sunkara, T.-H. Kim, H. Hwang, Y.-K. Cho, Lab-on-a-disc for fully integrated multiplex immunoassays. Anal. Chem. 84(5), 2133–2140 (2012)CrossRefGoogle Scholar
  10. 10.
    W.S. Lee, V. Sunkara, J.-R. Han, Y.-S. Park, Y.-K. Cho, Electrospun TiO2 nanofiber integrated lab-on-a-disc for ultrasensitive protein detection from whole blood. Lab Chip 15(2), 478–485 (2015)CrossRefGoogle Scholar
  11. 11.
    G.A. Posthuma-Trumpie, J. Korf, A. van Amerongen, Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393(2), 569–582 (2009)CrossRefGoogle Scholar
  12. 12.
    World development report: making services work for poor people (World Bank, New York, 2004)Google Scholar
  13. 13.
    The top 10 causes of death, Available: http://www.who.int/mediacentre/factsheets/fs310/en/index2.html. Accessed 10 June 2016
  14. 14.
    World population prospects: the 2015 revision (United Nations, New York, 2015)Google Scholar
  15. 15.
    A. Palangkaraya, J. Yong, Population ageing and its implications on aggregate health care demand: empirical evidence from 22 OECD countries. Int. J. Health Care Finance Econ. 9(4), 391–402 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Miller, Investing in the future of medicine: a investor’s guide to the in vitro diagnostics market, Available: http://www.forbes.com/sites/zackmiller/2014/02/12/investing-in-the-future-of-medicine-a-investors-guide-to-the-in-vitro-diagnostics-market/#9d6e5ea5feb4. Accessed 10 June 2016
  17. 17.
    B. Cowan, Nuclear magnetic resonance and relaxation (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  18. 18.
    N.E. Jacobsen, NMR spectroscopy explained: simplified theory, applications and examples for organic chemistry and structural biology (Wiley, Hoboken, 2007)CrossRefGoogle Scholar
  19. 19.
    H.Y. Carr, E.M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)CrossRefGoogle Scholar
  20. 20.
    S. Meiboom, D. Gill, Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 688–691 (1958)CrossRefGoogle Scholar
  21. 21.
    D.I. Hoult, R.E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24(1), 71–85 (1976)Google Scholar
  22. 22.
    L. Josephson, J.M. Perez, R. Weissleder, Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. 113(17), 3304–3306 (2001)CrossRefGoogle Scholar
  23. 23.
    J.M. Perez, L. Josephson, T. O’Loughlin, D. Hogemann, R. Weissleder, Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20(8), 816–820 (2002)CrossRefGoogle Scholar
  24. 24.
    J.M. Perez, F.J. Simeone, Y. Saeki, L. Josephson, R. Weissleder, Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125(34), 10192–10193 (2003)CrossRefGoogle Scholar
  25. 25.
    C. Min, H.L. Shao, M. Liong, T.J. Yoon, R. Weissleder, H. Lee, Mechanism of magnetic relaxation switching sensing. ACS Nano 6(8), 6821–6828 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14(8), 869–874 (2008)CrossRefGoogle Scholar
  27. 27.
    N. Sun, Y. Liu, H. Lee, R. Weissleder, D. Ham, CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid State Circuits 44(5), 1629–1643 (2009)CrossRefGoogle Scholar
  28. 28.
    N. Sun, T.J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham, Palm NMR and 1-Chip NMR. IEEE J. Solid State Circuits 46(1), 342–352 (2011)CrossRefGoogle Scholar
  29. 29.
    D. Ha, J. Paulsen, N. Sun, Y.Q. Song, D. Ham, Scalable NMR spectroscopy with semiconductor chips. Proc. Nat. Acad. Sci. (PNAS) 111(33), 11955–11960 (2014)CrossRefGoogle Scholar
  30. 30.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, CMOS biosensors for in vitro diagnosis – transducing mechanisms and applications. Lab Chip 16(19), 3664–3681 (2016)CrossRefGoogle Scholar
  31. 31.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, NMR–DMF: a modular nuclear magnetic resonance–digital microfluidics system for biological assays. Analyst 139(23), 6204–6213 (2014)CrossRefGoogle Scholar
  32. 32.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A thermal-insensitive all-electronic modular μNMR relaxometer with a 2D digital microfluidic chip for sample management, in Proceeding 19th International Conference on Miniaturized System Chemistry and Life Science (MicroTAS), 2015, pp. 302–304Google Scholar
  33. 33.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a Butterfly-coil input for integration with a digital microfluidic device inside a portable magnet, in Proceeding IEEE Asian Solid-State Circuits Conference (A-SSCC), 2015, pp. 1–4Google Scholar
  34. 34.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis. Analyst 140(15), 5129–5137 (2015)CrossRefGoogle Scholar
  35. 35.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a Butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J. Solid State Circuits 51(10), 2274–2286 (2016)CrossRefGoogle Scholar
  36. 36.
    K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld 50pM-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2016, pp. 474–475Google Scholar
  37. 37.
    K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld high-sensitivity micro-NMR CMOS platform with B-Field stabilization for multi-type biological/chemical assays. IEEE J. Solid State Circuits 52(1), 284–297 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ka-Meng Lei
    • 1
  • Pui-In Mak
    • 2
  • Man-Kay Law
    • 1
  • Rui Paulo Martins
    • 2
    • 3
  1. 1.State-Key Laboratory of Analog and Mixed-Signal VLSIUniversity of MacauMacauChina
  2. 2.State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECEUniversity of MacauMacauChina
  3. 3.Instituto Superior Técnico Universidade de LisboaLisbonPortugal

Personalised recommendations