Advertisement

Investigation of Time-Resolved Nozzle Interference Effects

  • Christoph Schoenleber
  • T. Kuthada
  • Nils Widdecke
  • F. Wittmeier
  • J. Wiedemann
Conference paper

Abstract

Automotive wind tunnels still see an increasing significance in the vehicle development process. Nevertheless, the flow topology in the test sections of open jet wind tunnels is not yet understood completely. A large source for transient structures is the shear layer developing between the high velocity nozzle flow and the calmly air in the plenum.

For a better understanding, the shear layer is investigated in the symmetry plane with a multi-hole probe and PIV measurements in this paper. The analysis of the recorded data shows fluctuations with a Strouhal number of 0.46 based on the nozzle hydraulic diameter. This value matches other researches of jet flow. However, the concept of vortices separating at the nozzle edge seems to be incomplete. The PIV measurements reveal a wave structure in the shear layer at the nozzle exit. These waves release larger vortices moving along the outer boundary of the shear layer. Mode decomposition (POD) shows changing intensities of these vortices for varying wind tunnel velocities. Different flow structures are detected when delta wings are mounted to the nozzle edges.

Abbreviations

CFD

Computational Fluid Dynamics

FKFS

Research Institute of Automotive Engineering and Vehicle Engines Stuttgart

PIV

Particle Image Velocimetry

POD

Proper Orthogonal Decomposition

Notes

Acknowledgements

The authors like to thank the team of the model scale wind tunnel for the support and the colleagues from the vehicle aerodynamics and thermal management department for the assisting discussions.

References

  1. 1.
    Mercker, E., Wiedemann, J.: On the correlation of interference effects in open jet wind tunnels. SAE Technical Paper 960671 (1996)Google Scholar
  2. 2.
    Mercker, E., Cooper, K., Fischer, O., Wiedemann, J.: The influence of a horizontal pressure distribution on aerodynamic drag in open and closed wind tunnels. SAE Technical Paper 2005-01-0867 (2005)Google Scholar
  3. 3.
    Mercker, E., Cooper, K.: A two-measurement correction for the effects of a pressure gradient on automotive, open-jet wind tunnel measurements. SAE Technical Paper 2006-01-0568 (2006)Google Scholar
  4. 4.
    Wickern, G., Schwartekopp, B.: Correction of nozzle gradient effects in open jet wind tunnels. SAE Technical Paper 2004-01-0669 (2004)Google Scholar
  5. 5.
    Hennig, A., Widdecke, N., Wiedemann, J.: A Study on Collector Interference Effects in Open Jet Wind Tunnels. Haus der Technik, Munich (2014)Google Scholar
  6. 6.
    Wickern, G., Heesen, W., Wallmann, S.: Wind tunnel pulsations and their active suppression. SAE Technical Paper 2000-01-0869 (2000)Google Scholar
  7. 7.
    Beland, O.: Buffeting suppression technologies for automotive wind tunnels tested on a scale model. In: Wiedemann, J. (ed.) Proceedings of the 6th FKFS-Conference on Progress in Vehicle Aerodynamics and Thermal Management, Stuttgart (2007)Google Scholar
  8. 8.
    Kuenstner, R., Potthoff, J., Essers, U.: The aero-acoustic wind tunnel of stuttgart university. SAE Technical Paper 950625 (1995)Google Scholar
  9. 9.
    Blumrich, R., Widdecke, N., Wiedemann, J., Michelbach, A., Wittmeier, F., Beland, O.: New FKFS technology at the full-scale aeroacoustic wind tunnel of University of Stuttgart. SAE Technical Paper 2015-01-1557 (2015)Google Scholar
  10. 10.
    Mercker, E.: On buoyancy and wake distortion in test sections of automotive wind tunnels. In: Wiedemann, J. (ed.) Proceedings of the 9th FKFS-Conference on Progress in Vehicle Aerodynamics and Thermal Management, Stuttgart, 2013Google Scholar
  11. 11.
    Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  12. 12.
    Haigermoser, C., Vesely, L., Novara, M., Onorato, M.: A time-resolved particle image velocimetry investigation of a cavity flow with a thick incoming turbulent boundary layer. Phys. Fluids 20, 105101 (2008)CrossRefGoogle Scholar
  13. 13.
    Gong, J.: Grundlagenuntersuchung zur aktiven Beeinflussung der abgelösten Strömung. Dissertation Universität Stuttgart. Springer, Wiesbaden (2015)Google Scholar
  14. 14.
    Rossiter, J.E.: Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Ministry of Aviation, Aeronautical Research Council, Reports and Memoranda No. 3438 (1964)Google Scholar
  15. 15.
    Rennie, M., Kim, M.-S., Lee, J.-H., Kee, J.-D.: Suppression of open-jet pressure fluctuations in the Hyundai aeroacoustic wind tunnel. SAE Technical Paper 2004-01-0803 (2004)Google Scholar
  16. 16.
    Lumley, J.L.: The structure of inhomogeneous turbulent flow. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Radio Wave Propagation, Moscow (1967)Google Scholar
  17. 17.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. XLV(3), 561–590 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Meyer, K.E., Pedersen, J.M., Özkan, O.: A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199–227 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.C., Noack, B.R., Wygnanski, I.: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)CrossRefGoogle Scholar
  20. 20.
    Wittmeier, F.: The recent upgrade of the model scale wind tunnel of University of Stuttgart. SAE Technical Paper 2017-01-1527 (2017)CrossRefGoogle Scholar
  21. 21.
    Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle Image Velocimetry. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Westerweel, J., Scarano, F.: Universal outlier detection for PIV data. Exp. Fluids 39, 1096–1100 (2005)CrossRefGoogle Scholar
  23. 23.
    Adrian, R.J., Christensen, K.T., Liu, Z.-C.: Analysis and interpretation of instantaneous turbulent velocity fields. Phys. Fluids 29, 275–290 (2000)Google Scholar
  24. 24.
    Zaman, K.B.M.Q., Hussain, A.K.M.F.: Vortex pairing in a circular jet under controlled excitation. J. Fluid Mech. 101, 449–491 (1980)CrossRefGoogle Scholar
  25. 25.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Christoph Schoenleber
    • 1
  • T. Kuthada
    • 1
  • Nils Widdecke
    • 1
  • F. Wittmeier
    • 1
  • J. Wiedemann
    • 1
  1. 1.FKFS/IVKUniversity of StuttgartStuttgartGermany

Personalised recommendations