Skip to main content

Nature-Inspired Optimization of Transport in Porous Media

  • Chapter
  • First Online:
Diffusive Spreading in Nature, Technology and Society

Abstract

Materials combining pore sizes of different length scales are highly important for catalysis and separation processes, where optimization of adsorption and transport properties is required. Nature can be an excellent guide to rational design, as it is full of such “hierarchical” structures that are intrinsically scaling, efficient and robust. In technology, as well as in nature, the performance of the transport systems is significantly affected by their structure over different length scales, which provides abundant room to optimize transport through manipulating the multiscale structure, such as transport channel size and distribution. Following this avenue, the chapter discusses a nature-inspired (chemical) engineering (NICE) approach to optimize mass transport for catalytic systems employing porous media, with particular emphasis on the optimization of porous catalysts and proton exchange membrane (PEM) fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.sciencephoto.com/media/801282/view (n.d)

  2. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th edn. (Wiley, New York, 2011)

    Google Scholar 

  3. D.D. Do, Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, London, 1998)

    Google Scholar 

  4. J. Kärger, D.M. Ruthven, D.N. Theodorou, Diffusion in Nanoporous Materials (Wiley-VCH, Weinheim, 2012)

    Book  Google Scholar 

  5. F. Keil, Catal. Today 53, 245 (1999)

    Article  Google Scholar 

  6. R. Krishna, J.A. Wesselingh, Chem. Eng. Sci. 52, 861 (1997)

    Article  Google Scholar 

  7. R. Krishna, Chem. Soc. Rev. 41, 3099 (2012)

    Article  Google Scholar 

  8. I. Medved, R. Černý, Microporous Mesoporous Mater. 142, 405 (2011)

    Article  Google Scholar 

  9. J. Kärger, ChemPhysChem 16, 24 (2015)

    Article  Google Scholar 

  10. W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Chem. Soc. Rev. 45, 3353 (2016)

    Article  Google Scholar 

  11. F.J. Keil, Chem. Eng. Sci. 51, 1543 (1996)

    Article  Google Scholar 

  12. M.-O. Coppens, G. Wang, in Design Heterogeneous Catalysis, ed. U. Ozkan (Wiley, New York, 2009), pp. 25–58

    Google Scholar 

  13. M.-O. Coppens, in Catalysis, Structure & Reactivity, ed. A. Cybulski, J.A. Moulijn, 2nd edn. (CRC Press, Boca Raton, 2005), pp. 779–805

    Google Scholar 

  14. M. Sahimi, G.R. Gavalas, T.T. Tsotsis, Chem. Eng. Sci. 45, 1443 (1990)

    Article  Google Scholar 

  15. A. Wheeler, Adv. Catal. 3, 249 (1951)

    Google Scholar 

  16. M.F. Johnson, W.E. Stewart, J. Catal. 4, 248 (1965)

    Article  Google Scholar 

  17. N. Epstein, Chem. Eng. Sci. 44, 777 (1989)

    Article  Google Scholar 

  18. N. Wakao, J.M. Smith, Ind. Eng. Chem. Fundam. 3, 123 (1964)

    Article  Google Scholar 

  19. N. Wakao, J.M. Smith, Chem. Eng. Sci. 17, 825 (1962)

    Article  Google Scholar 

  20. R.N. Foster, J.B. Butt, AIChE J. 12, 180 (1966)

    Article  Google Scholar 

  21. J. Szekely, J.W. Evans, Chem. Eng. Sci. 25, 1091 (1970)

    Article  Google Scholar 

  22. R. Mann, G. Thomson, Chem. Eng. Sci. 42, 555 (1987)

    Article  Google Scholar 

  23. V.N. Burganos, S.V. Sotirchos, AIChE J. 33, 1678 (1987)

    Article  Google Scholar 

  24. J. Wood, L.F. Gladden, Chem. Eng. Sci. 57, 3047 (2002)

    Article  Google Scholar 

  25. J. Wood, L.F. Gladden, Chem. Eng. Sci. 57, 3033 (2002)

    Article  Google Scholar 

  26. P. Rajniak, R.T. Yang, AIChE J. 42, 319 (1996)

    Article  Google Scholar 

  27. V. Novak, P. Koci, F. Štěpánek, M. Marek, Ind. Eng. Chem. Res. 50, 12904 (2011)

    Article  Google Scholar 

  28. F. Dorai, C. Moura Teixeira, M. Rolland, E. Climent, M. Marcoux, A. Wachs, Chem. Eng. Sci. 129, 180 (2015)

    Article  Google Scholar 

  29. F. Larachi, R. Hannaoui, P. Horgue, F. Augier, Y. Haroun, S. Youssef, E. Rosenberg, M. Prat, M. Quintard, Chem. Eng. J. 240, 290 (2014)

    Article  Google Scholar 

  30. V. Novak, F. Stepanek, P. Koci, M. Marek, M. Kubicek, Chem. Eng. Sci. 65, 2352 (2010)

    Article  Google Scholar 

  31. M.J. Blunt, M.D. Jackson, M. Piri, P.H. Valvatne, Adv. Water Resour. 25, 1069 (2002)

    Article  ADS  Google Scholar 

  32. G.T. Vladisavljević, I. Kobayashi, M. Nakajima, R.A. Williams, M. Shimizu, T. Nakashima, J. Memb. Sci. 302, 243 (2007)

    Article  Google Scholar 

  33. H. Sinha, C.-Y. Wang, Electrochem. Solid-State Lett. 9, A344 (2006)

    Article  Google Scholar 

  34. C.A. Baldwin, A.J. Sederman, M.D. Mantle, P. Alexander, L.F. Gladden, J. Colloid Interface Sci. 181, 79 (1996)

    Article  ADS  Google Scholar 

  35. A.R. Riyadh, T. Karsten, S.W. Clinton, Soil Sci. Soc. Am. J. 67, 1687 (2003)

    Article  Google Scholar 

  36. J.-Y. Arns, V. Robins, A.P. Sheppard, R.M. Sok, W.V. Pinczewski, M.A. Knackstedt, Transp. Porous Media 55, 21 (2004)

    Article  Google Scholar 

  37. H. Dong, M.J. Blunt, Phys. Rev. E 80, 1 (2009)

    Google Scholar 

  38. D. Silin, T. Patzek, Phys. A 371, 336 (2006)

    Article  Google Scholar 

  39. F.A.L. Dullien, Fluid Transport and Pore Structure, 2nd edn. (Academic Press, San Diego, 1992)

    Google Scholar 

  40. J.F. Richardson, W.N. Zaki, Trans. Inst. Chem. Eng. 32, 35 (1954)

    Google Scholar 

  41. P.N. Sharratt, R. Mann, Chem. Eng. Sci. 42, 1565 (1987)

    Article  Google Scholar 

  42. G.S. Armatas, Chem. Eng. Sci. 61, 4662 (2006)

    Article  Google Scholar 

  43. M.P. Hollewand, L.F. Gladden, Chem. Eng. Sci. 47, 2757 (1992)

    Article  Google Scholar 

  44. M.M. Mezedur, M. Kaviany, W. Moore, AIChE J. 48, 15 (2002)

    Article  Google Scholar 

  45. M.P. Hollewand, L.F. Gladden, Chem. Eng. Sci. 47, 1761 (1992)

    Article  Google Scholar 

  46. B.B. Mandelbrot, The Fractal Geometry of Nature, 2nd edn. (Freeman, San Francisco, 1983)

    Google Scholar 

  47. D. Avnir, The Fractal Approach to Heterogeneous Chemistry (Wiley, Chichester, 1989)

    Google Scholar 

  48. S. Havlin, D. Ben-Avraham, Adv. Phys. 51, 187 (2002)

    Article  ADS  Google Scholar 

  49. M.-O. Coppens, G.F. Froment, Chem. Eng. Sci. 50, 1013 (1995)

    Article  Google Scholar 

  50. M.-O. Coppens, G.F. Froment, Chem. Eng. Sci. 50, 1027 (1995)

    Article  Google Scholar 

  51. M.-O. Coppens, Catal. Today 53, 225 (1999)

    Article  Google Scholar 

  52. M.-O. Coppens, G.F. Froment, Chem. Eng. Sci. 49, 4897 (1994)

    Article  Google Scholar 

  53. P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.-O. Coppens, Angew. Chemie - Int. Ed. 55, 122 (2016)

    Article  Google Scholar 

  54. P. Trogadas, M.M. Nigra, M.-O. Coppens, New J. Chem. 40, 4016 (2016)

    Article  Google Scholar 

  55. M.-O. Coppens, Curr. Opin. Chem. Eng. 1, 281 (2012)

    Article  Google Scholar 

  56. M.-O. Coppens, in Multiscale Methods Multiscale Methods Bridging the Scales in Science and Engineering, ed. by J. Fish (Oxford University Press, New York, 2010), pp. 536–559

    Google Scholar 

  57. S. Weiner, H.D. Wagner, Annu. Rev. Mater. Sci. 28, 271 (1998)

    Article  ADS  Google Scholar 

  58. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Med. Eng. Phys. 20, 92 (1998)

    Article  Google Scholar 

  59. P. Fratzl, R. Weinkamer, Prog. Mater Sci. 52, 1263 (2007)

    Article  Google Scholar 

  60. http://www.gla.ac.uk/ibls/US/fab/tutorial/generic/bone2.html (n.d)

  61. http://juanribon.com/design/lung-Cancer-Diagram.php (n.d)

  62. https://3dprint.com/7729/3d-Print-Organs-Vascular/ (n.d)

  63. http://earthobservatory.nasa.gov/IOTD/view.php?id=2704 (n.d)

  64. E.R. Weibel, Morphometry of the Human Lung (Springer, Berlin, 1963)

    Book  Google Scholar 

  65. E.R. Weibel, The Pathway for Oxygen (Harvard University Press, Cambridge, MA, 1984)

    Google Scholar 

  66. S. Gheorghiu, S. Kjelstrup, P. Pfeifer, M.-O. Coppens, in Fractals in Biology and Medicine, ed. by T.F. Nonnenmacher, G.A. Losa, E.R. Weibel (Springer, Birkhäuser, 2005), pp. 31–42

    Chapter  Google Scholar 

  67. C. Hou, S. Gheorghiu, M.-O. Coppens, V.H. Huxley, P. Pfeifer, in Fractals in Biology and Medicine, ed. by T.F. Nonnenmacher, G.A. Losa, E.R. Weibel (Springer, Birkhäuser, 2005), pp. 17–30

    Chapter  Google Scholar 

  68. E.R. Weibel, Am. J. Physiol. 261, L361 (1991)

    Google Scholar 

  69. C.D. Murray, Proc. Natl. Acad. Sci. U. S. A. 12, 207 (1926)

    Article  ADS  Google Scholar 

  70. C.D. Murray, Proc. Natl. Acad. Sci. U. S. A. 12, 299 (1926)

    Article  ADS  Google Scholar 

  71. F.J. Keil, C. Rieckmann, Chem. Eng. Sci. 54, 3485 (1994)

    Google Scholar 

  72. S. van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Catal. Rev. Eng. 45, 297 (2003)

    Article  Google Scholar 

  73. S. Gheorghiu, M.-O. Coppens, AIChE J. 50, 812 (2004)

    Article  Google Scholar 

  74. G. Wang, E. Johannessen, C.R. Kleijn, S.W. de Leeuw, M.-O. Coppens, Chem. Eng. Sci. 62, 5110 (2007)

    Article  Google Scholar 

  75. G. Wang, M.-O. Coppens, Chem. Eng. Sci. 65, 2344 (2010)

    Article  Google Scholar 

  76. G. Wang, M.-O. Coppens, Ind. Eng. Chem. Res. 47, 3847 (2008)

    Article  Google Scholar 

  77. E. Johannessen, G. Wang, M.-O. Coppens, Ind. Eng. Chem. Res. 46, 4245 (2007)

    Article  Google Scholar 

  78. S.M. Rao, M.-O. Coppens, Chem. Eng. Sci. 83, 66 (2012)

    Article  Google Scholar 

  79. S.M. Rao, M.-O. Coppens, Ind. Eng. Chem. Res. 49, 11087 (2010)

    Article  Google Scholar 

  80. J. Wang, J.C. Groen, W. Yue, W. Zhou, M.-O. Coppens, J. Mater. Chem. 18, 468 (2008)

    Article  Google Scholar 

  81. J. Wang, W. Yue, W. Zhou, M.-O. Coppens, Microporous Mesoporous Mater. 120, 19 (2009)

    Article  Google Scholar 

  82. J. Kärger, S. Vasenkov, Microporous Mesoporous Mater. 85, 195 (2005)

    Article  Google Scholar 

  83. G. Ye, X. Duan, K. Zhu, X. Zhou, M.-O. Coppens, W. Yuan, Chem. Eng. Sci. 132, 108 (2015)

    Article  Google Scholar 

  84. F.J. Keil, C. Rieckmann, Hung. J. Ind. Chem. 21, 277 (1993)

    Google Scholar 

  85. C. Rieckmann, T. Duren, F.J. Keil, Hung. J. Ind. Chem. 25, 137 (1997)

    Google Scholar 

  86. G. Ye, X. Zhou, M.-O. Coppens, W. Yuan, AIChE J. 62, 451 (2016)

    Article  Google Scholar 

  87. G. Ye, X. Zhou, M.-O. Coppens, J. Zhou, W. Yuan, AIChE J. 63, 78 (2017)

    Article  Google Scholar 

  88. W.H.J. Hogarth, J.B. Benziger, J. Power Sour. 159, 968 (2006)

    Article  ADS  Google Scholar 

  89. J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (Wiley, Chichester, 2003)

    Book  Google Scholar 

  90. S. Kjelstrup, M.-O. Coppens, J.G. Pharoah, P. Pfeifer, Energy Fuels 24, 5097 (2010)

    Article  Google Scholar 

  91. J.P. Kloess, X. Wang, J. Liu, Z. Shi, L. Guessous, J. Power Sour. 188, 132 (2009)

    Article  ADS  Google Scholar 

  92. R. Roshandel, F. Arbabi, G.K. Moghaddam, Renew. Energy 41, 86 (2012)

    Article  Google Scholar 

  93. A. Arvay, J. French, J.C. Wang, X.H. Peng, A.M. Kannan, Int. J. Hydrogen Energy 38, 3717 (2013)

    Article  Google Scholar 

  94. K.A. McCulloh, J.S. Sperry, R.A. Frederick, Nature 421, 939 (2003)

    Article  ADS  Google Scholar 

  95. P. Domachuk, K. Tsioris, F.G. Omenetto, D.L. Kaplan, Adv. Mater. 22, 249 (2010)

    Article  Google Scholar 

  96. T.F. Sherman, J. Gen. Physiol. 78, 431 (1981)

    Article  Google Scholar 

  97. B. Ramos-Alvarado, A. Hernandez-Guerrero, F. Elizalde-Blancas, M.W. Ellis, Int. J. Hydrogen Energy 36, 12965 (2011)

    Article  Google Scholar 

  98. P. Trogadas, J.I.S. Cho, T.P. Neville, J. Marquis, B. Wu, D.J.L. Brett, M.-O. Coppens, Energy Environ. Sci. doi: 10.1039/c7ee02161e (2017)

  99. J. Marquis, M.-O. Coppens, Chem. Eng. Sci. 102, 151 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Olivier Coppens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coppens, MO., Ye, G. (2018). Nature-Inspired Optimization of Transport in Porous Media. In: Bunde, A., Caro, J., Kärger, J., Vogl, G. (eds) Diffusive Spreading in Nature, Technology and Society. Springer, Cham. https://doi.org/10.1007/978-3-319-67798-9_11

Download citation

Publish with us

Policies and ethics