Skip to main content

Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10558))

Abstract

Recommender Systems have become increasingly popular, propelling the emergence of several algorithms. As the number of algorithms grows, the selection of the most suitable algorithm for a new task becomes more complex. The development of new Recommender Systems would benefit from tools to support the selection of the most suitable algorithm. Metalearning has been used for similar purposes in other tasks, such as classification and regression. It learns predictive models to map characteristics of a dataset with the predictive performance obtained by a set of algorithms. For such, different types of characteristics have been proposed: statistical and/or information-theoretical, model-based and landmarkers. Recent studies argue that landmarkers are successful in selecting algorithms for different tasks. We propose a set of landmarkers for a Metalearning approach to the selection of Collaborative Filtering algorithms. The performance is compared with a state of the art systematic metafeatures approach using statistical and/or information-theoretical metafeatures. The results show that the metalevel accuracy performance using landmarkers is not statistically significantly better than the metafeatures obtained with a more traditional approach. Furthermore, the baselevel results obtained with the algorithms recommended using landmarkers are worse than the ones obtained with the other metafeatures. In summary, our results show that, contrary to the results obtained in other tasks, these landmarkers are not necessarily the best metafeatures for algorithm selection in Collaborative Filtering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. on Knowl. and Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Adomavicius, G., Zhang, J.: Impact of data characteristics on recommender systems performance. ACM Trans. Manag. Inf. Syst. 3(1), 1–17 (2012)

    Article  Google Scholar 

  3. Bensusan, H., Kalousis, A.: Estimating the Predictive Accuracy of a Classifier. In: European Conference on Machine Learning, pp. 25–36 (2001)

    Google Scholar 

  4. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  5. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining, 1st edn. Springer, Heidelberg (2009). doi:10.1007/978-3-540-73263-1

    MATH  Google Scholar 

  6. Brazdil, P., Soares, C., da Costa, J.: Ranking Learning Algorithms : Using IBL and Meta-Learning on Accuracy and Time Results. Mach. Learn. 50(3), 251–277 (2003)

    Article  MATH  Google Scholar 

  7. Cunha, T., Soares, C., de Carvalho, A.C.: Selecting Collaborative Filtering algorithms using Metalearning. In: European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 393–409 (2016)

    Google Scholar 

  8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Dooms, S., De Pessemier, T., Martens, L.: MovieTweetings: a Movie Rating Dataset Collected From Twitter. In: CrowdRec at RecSys 2013 (2013)

    Google Scholar 

  10. Ekstrand, M., Riedl, J.: When recommenders fail: predicting recommender failure for algorithm selection and combination. In: ACM Conference on Recommender Systems, pp. 233–236 (2012)

    Google Scholar 

  11. Fürnkranz, J., Petrak, J., Bradzil, P., Soares, C.: On the use of fast subsampling estimates for algorithm recommendation. Technical report (2002)

    Google Scholar 

  12. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: MyMediaLite: a free recommender system library. In: ACM Conference on Recommender Systems, pp. 305–308 (2011)

    Google Scholar 

  13. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant Time Collaborative Filtering Algorithm. Inf. Retr. 4(2), 133–151 (2001)

    Article  MATH  Google Scholar 

  14. Griffith, J., O’Riordan, C., Sorensen, H.: Investigations into user rating information and predictive accuracy in a collaborative filtering domain. In: ACM Symposium on Applied Computing, pp. 937–942 (2012)

    Google Scholar 

  15. GroupLens: MovieLens datasets (2016). http://grouplens.org/datasets/movielens/

  16. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  17. Kanda, J., de Carvalho, A., Hruschka, E., Soares, C., Brazdil, P.: Meta-learning to select the best meta-heuristic for the Traveling Salesman Problem: A comparison of meta-features. Neurocomputing 205, 393–406 (2016)

    Article  Google Scholar 

  18. Kück, M., Crone, S.F., Freitag, M.: Meta-learning with neural networks and landmarking for forecasting model selection - an empirical evaluation of different feature sets applied to industry data meta-learning with neural networks and landmarking for forecasting model selection. In: International Joint Conference on Neural Networks. pp. 1499–1506 (2016)

    Google Scholar 

  19. Kuhn, M.: caret: Classification and Regression Training (2016). https://CRAN.R-project.org/package=caret, r package version 6.0-73

  20. Ler, D., Koprinska, I., Chawla, S.: Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. School of Information Technologies University of Sydney, Technical report (2005)

    Google Scholar 

  21. Ler, D., Koprinska, I., Chawla, S.: Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. In: Proceedings of the ICML-2005 Workshop on Metalearning, pp. 44–51 (2005)

    Google Scholar 

  22. Lü, L., Medo, M., Yeung, C.H., Zhang, Y.C., Zhang, Z.K., Zhou, T.: Recommender systems. Phys. Rep. 519(1), 1–49 (2012)

    Article  Google Scholar 

  23. Matuszyk, P., Spiliopoulou, M.: Predicting the performance of collaborative filtering algorithms. In: International Conference on Web Intelligence, Mining and Semantics. pp. 38:1–38:6 (2014)

    Google Scholar 

  24. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: ACM Conference on Recommender Systems, pp. 165–172 (2013)

    Google Scholar 

  25. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: International Conference on Machine Learning, pp. 743–750 (2000)

    Google Scholar 

  26. Pinto, F., Soares, C., Mendes-Moreira, J.: Towards automatic generation of Metafeatures. In: Pacific Asia Conference on Knowledge Discovery and Data Mining, pp. 215–226 (2016)

    Google Scholar 

  27. Prudêncio, R.B., Ludermir, T.B.: Meta-learning approaches to selecting time series models. Neurocomputing 61, 121–137 (2004)

    Article  Google Scholar 

  28. Rossi, A.L.D., de Carvalho, A.C.P.D.L.F., Soares, C., de Souza, B.F.: MetaStream: A meta-learning based method for periodic algorithm selection in time-changing data. Neurocomputing 127, 52–64 (2014)

    Article  Google Scholar 

  29. Serban, F., Vanschoren, J., Bernstein, A.: A survey of intelligent assistants for data analysis. ACM Comput. Surv. 47(212), 1–35 (2013)

    Article  Google Scholar 

  30. Vanschoren, J.: Understanding machine learning performance with experiment databases. Ph.D. thesis, Katholieke Universiteit Leuven (2010)

    Google Scholar 

  31. Wang, H., Lu, Y., Zhai, C.: Latent Aspect Rating Analysis Without Aspect Keyword Supervision. In: ACM SIGKDD, KDD 2011, pp. 618–626. ACM (2011)

    Google Scholar 

  32. Yahoo!: Webscope datasets (2016). https://webscope.sandbox.yahoo.com/

  33. Yang, X., Guo, Y., Liu, Y., Steck, H.: A survey of collaborative filtering based social recommender systems. Comput. Commun. 41, 1–10 (2014)

    Article  Google Scholar 

  34. Yelp: Yelp dataset challenge (2016). https://www.yelp.com/dataset_challenge

  35. Zafarani, R., Liu, H.: Social computing data repository at ASU (2009). http://socialcomputing.asu.edu

  36. Ziegler, C.N.C., McNee, S.M.S., Konstan, J.a.J., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web WWW 2005, p. 22. ACM (2005)

    Google Scholar 

Download references

Acknowledgements

This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 under the Portugal 2020 Partnership Agreement, and through the Portuguese National Innovation Agency (ANI) as a part of project «FASCOM | POCI-01-0247-FEDER-003506».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cunha, T., Soares, C., de Carvalho, A.C.P.L.F. (2017). Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers. In: Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds) Discovery Science. DS 2017. Lecture Notes in Computer Science(), vol 10558. Springer, Cham. https://doi.org/10.1007/978-3-319-67786-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67786-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67785-9

  • Online ISBN: 978-3-319-67786-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics