The Jurassic Paleogeography of South America from Paleomagnetic Data

  • María Paula Iglesia Llanos
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


For decades, it has been interpreted that South America had remained stationary in similar present-day latitudes during most of the Mesozoic and the Cenozoic. More recent paleomagnetic data however, suggest a thoroughly different scenario for the Jurassic. In order to test the stationary vs. the dynamic—continent model, a refined Jurassic South American apparent polar wander path was constructed and compared with those from Eurasia, Africa, and North America. Similarities are such that a master path for Pangea is proposed. This path shows remarkable different polar positions during the Early Jurassic that are interpreted to have been caused by true polar wander. An absolute paleogeographical reconstruction of Pangea is presented. Paleolatitudes changes are very well sustained by paleoclimatic proxies from the southern and northern hemispheres.


Paleomagnetism Jurassic Paleogeography Pangea Paleoclimate 


  1. Arias C (2009) Extinction pattern of marine Ostracoda across the Pliensbachian-Toarcian boundary in the Cordillera Ibérica, NE Spain: causes and consequences. Geobios 42:1–15CrossRefGoogle Scholar
  2. Beck ME Jr (1999) Jurassic and Cretaceous apparent polar wander relative to South America: some tectonic implications. J Geophys Res 104:5063–5067CrossRefGoogle Scholar
  3. Butler RF (1992) Paleomagnetism: magnetic domains to geological terranes. Blackwell Scientific Publications, Oxford, UK, p 319Google Scholar
  4. Damborenea SE (2001) Unidades paleobiogeográficas marinas jurásicas basadas sobre moluscos bivalvos: una visión desde el Hemisferio Sur. Anales Acad Nac Cs Ex Fís Nat 53:141–160Google Scholar
  5. Damborenea SE (2002) Jurassic evolution of Southern Hemisphere marine palaeobiogeographic units based on benthonic bivalves. Geobios 35:51–71CrossRefGoogle Scholar
  6. Evans ME (1976) Test of the dipolar nature of the geomagnetic field throughout Phanerozoic time. Nat 262:676–677CrossRefGoogle Scholar
  7. Frei LS, Cox A (1987) Relative displacement between Eurasia and North America prior to the formation of oceanic crust in the North Atlantic. Tectonophysics 142:111–136CrossRefGoogle Scholar
  8. Gómez-Pérez I (2003) An early Jurassic deep-water stromatolitic bioherm related to possible methane seepage (Los Molles Formation, Neuquén, Argentina). Palaeogeogr. Palaeocl 201:21–49CrossRefGoogle Scholar
  9. Iglesia Llanos MP (1997) Magnetoestratigrafía y Paleomagnetismo del Jurásico Inferior marino de la Cuenca Neuquina, República Argentina, Ph.D. Thesis, Universidad de Buenos Aires, Buenos Aires, ArgentinaGoogle Scholar
  10. Iglesia Llanos MP, Prezzi CB (2013) The role of true polar wander on the Jurassic palaeoclimate. Int J Earth Sci 102:745–759CrossRefGoogle Scholar
  11. Iglesia Llanos MP, Riccardi AC, Singer SE (2006) Palaeomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: a new Jurassic Apparent Polar Wander Path for South America. Earth Planet Sci Lett 252:379–397CrossRefGoogle Scholar
  12. Iglesia Llanos MP, Riccardi AC, Singer SE (2008) Reply to “A comment on Early Jurassic Palaeomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: a new Jurassic Apparent Polar Wander Path for South America. Earth Planet Sci Lett 265:316–319CrossRefGoogle Scholar
  13. Kent DV, Irving E (2010) Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics. J Geophys Res 115. doi:
  14. Klitgord KD, Schouten H (1986) Plate kinematics of the Central Atlantic. In: Vogt PR, Tulchoke BE (eds) The Geology of North America M, The western North Atlantic region. Geol Soc Am, New York, pp 351–378Google Scholar
  15. Lanza R, Meloni A (2006). The earth’s magnetism. An introduction for geologists Springer, Berlin, Heidelberg, New York, p 278Google Scholar
  16. Lawver L, Scotese CR (1987) A revised reconstruction of Gondwanaland. In: McKenzie GD (ed.) Gondwana six: Structure, Tectonics and Geophysics. Am Geophys Union Monogr 40:17–23Google Scholar
  17. Livermore RA, Vine FJ, Smith AG (1983) Plate motions and the geomagnetic field—I. Quaternary and late Tertiary. Geophys J Roy Astron Soc 73:153–171CrossRefGoogle Scholar
  18. Livermore RA, Vine FJ, Smith AG (1984) Plate motions and the geomagnetic field—II. Jurassic to tertiary. Geophys J Roy Astr Soc 79:939–961CrossRefGoogle Scholar
  19. Macchioni F, Cecca F (2002) Biodiversity and biogeography of middle-late liassic ammonoids: implications for the early Toarcian mass extinction. Geobios 35:165–175CrossRefGoogle Scholar
  20. May SR, Butler SR (1986) North American Jurassic Apparent polar wander: Implications for plate motions, paleogeography and Cordilleran tectonics. J Geophys Res 91:11519–11544CrossRefGoogle Scholar
  21. McElhinny MW, Brock A (1975) A new palaeomagnetic result from East Africa and estimates of the Mesozoic palaeoradius. Earth Planet Sci Lett 27:321–328CrossRefGoogle Scholar
  22. Morgan WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139CrossRefGoogle Scholar
  23. Navarrete C, Gianni G, Echaurren A, Folguera A (2016) Episodic Jurassic intraplate compression during supercontinent breakup next to the Karoo LIP in Southwestern Gondwana, Central Patagonia. J Geodyn. doi:
  24. Ogg JG, Ogg G, Gradstein FM (2016) Jurassic. In Ogg JG, Ogg G, Gradstein FM (eds) A concise geologic time scale, Elsevier, pp 151–166Google Scholar
  25. Oviedo E, Vilas JF (1984) Movimientos recurrentes en el Permo-Triásico entre el Gondwana Occidental y el Oriental. IX Congreso Geológico Argentino 3:97–114Google Scholar
  26. Philippe M, Thevenard F (1996) Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of Western Europe. Rev Palaeobot Palyno 91:353–370CrossRefGoogle Scholar
  27. Prévot M, Mattern E, Camps P, Daignières M (2000) Evidence for a 20° tilting of the Earth’s rotation axis 110 million years ago. Earth Planet Sci Lett 179:517–528CrossRefGoogle Scholar
  28. Rapalini AE, Abdeldayem AL, Tarling DH (1993) Intracontinental movements in Western Gondwanaland: a palaeomagnetic test. Tectonophysics 220:127–139CrossRefGoogle Scholar
  29. Riccardi AC, Iglesia Llanos MP (1999) Primer hallazgo de un amonite triásico en Argentina. Rev Asoc Geol Argent 54:298–300Google Scholar
  30. Riccardi AC, Damborenea SE, Manceñido MO, Ballent SC (1988) Hettangiano y Sinemuriano marinos en la Argentina. IV Congreso Geológico Chileno, Santiago de Chile, pp C359–374Google Scholar
  31. Riccardi AC, Damborenea SE, Manceñido MO, Ballent SC (1991) Hettangian and Sinemurian (Lower Jurassic) biostratigraphy of Argentina. J South Am Earth Sci 4:159–170CrossRefGoogle Scholar
  32. Riccardi AC, Damborenea SE, Manceñido MO, Iglesia Llanos MP (2003) The Triassic/Jurassic Boundary in the Andes of Argentina. Riv Ital Paleont Strat 110:69–76Google Scholar
  33. Rosales I, Quesada S, Robles S (2004) Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque–Cantabrian Basin, northern Spain. Palaeogeogr Palaeocl 203:253–275CrossRefGoogle Scholar
  34. Royden LH (1993) The tectonic expression slab pull at continental convergent boundaries. Tectonics 12:303–325CrossRefGoogle Scholar
  35. Sager WW, Koppers AAP (2000) Late cretaceous polar wander of the pacific plate: evidence of a rapid true polar wander event. Science 287:455–459CrossRefGoogle Scholar
  36. Spalletti LA, Franzese JR, MacDonald D, Gómez-Pérez I (1999) Palaeogeographic evolution of southern South America during the cretaceous. V Simposio sobre o Cretáceo do Brasil, Serra Negra, Brazil, pp 87–95Google Scholar
  37. Steinberger B, Torsvik TH (2008) Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452:620–624CrossRefGoogle Scholar
  38. Suan G, Pittet B, Mattioli E, Lécuyer C (2006) Palaeoclimatic and palaeoceanographic changes during the Pliensbachian-Toarcian (Early Jurassic): new results from stable isotope analyses of brachiopod shells. Volumina Jurassica 4:137–138Google Scholar
  39. Torsvik TH, Smethurst MA (1999) Plate tectonic modelling: virtual reality with GMAP. Comput Geosci 25:395–402CrossRefGoogle Scholar
  40. Torsvik TH, Dietmar Müller R, Van der Voo R, Steinberger B, Gaina C (2008) Global plate motion frames: Toward a unified model. Rev Geoph 46(RG3004):1–44Google Scholar
  41. Valencio DA, Vilas JF, Pacca IG (1983) The significance of the palaeomagnetism of Jurassic-Cretaceous rocks from South America: predrift movements, hairpins and Magnetostratigraphy. Geophys J R Astron Soc 73:135–151CrossRefGoogle Scholar
  42. Van der Voo R, Torsvik TH (2004) The quality of the European permo-triassic paleopoles and its impact on Pangea reconstructions. Timescales of the Paleomagnetic Field, Am Geophys Union Geophys Monograph Series 145:29–42Google Scholar
  43. Vizán H (1998) Paleomagnetism of the Lower Jurassic Lepá and Osta Arena Formations, Argentine, Patagonia. J South Am Earth Sci 11:333–350CrossRefGoogle Scholar
  44. Volkheimer W, Quattrocchio M (1981) Distribución estratigráfica de los palinomorfos jurásicos y cretácicos en la faja andina y áreas adyacentes de América del Sur Austral con especial consideración en la Cuenca Neuquina. In: Volkheimer W, Musacchio EA (eds) Cuencas sedimentarias del Jurásico y Cretácico de América del Sur. Comité Sudamericano del Jurásico y Cretácico 2, Buenos Aires, pp 407–444Google Scholar
  45. Volkheimer W, Rauhut OWM, Quattrocchio M, Martínez MA (2008) Jurassic Paleoclimates in Argentina, a review. Rev Asoc Geol Argent 63:549–556Google Scholar
  46. Zakharov VA, Shurygin BN, Il’ina VI, Nikitenko BL (2006) Pliensbachian–Toarcian biotic turnover in North Siberia and the Arctic region. Stratigr Geol Correl 14, pp 399–417Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Geociencias Básicas, Ambientales y Aplicadas, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires–Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina

Personalised recommendations