A Provenance Analysis from the Lower Jurassic Units of the Neuquén Basin. Volcanic Arc or Intraplate Magmatic Input?

  • Maximiliano Naipauer
  • Ezequiel García Morabito
  • Marcelo Manassero
  • Victor V. Valencia
  • Victor A. Ramos
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


A possible signal of the Jurassic Chon Aike Igneous Province within the early infill of the Neuquén Basin is recognized in our provenance analyses. We use a combination of detrital zircon geochronology and Lu–Hf isotope analysis, along with sandstone petrography descriptions to characterize the sediments source region in the Cuyo Group. The sandstone petrographic analysis confirms important contributions from volcanic sources of different compositions. U-Pb ages and Hf isotopes obtained in the analyzed zircons indicate a more complex configuration given by multiple igneous components. The variations in the provenance patterns allow us to make some observations about the paleogeographic evolution of the basin. At the base of the sequence, the sediments were derived from local sources composed of Permian basement and Upper Triassic volcanic rocks, whereas in the top, the zircons were supplied from Lower Jurassic volcanic rocks and Lower Paleozoic and Precambrian basements suggesting more distal and ancient sources. Low values of εHft (−15.5 to −0.7) analyzed in Permian and Triassic detrital zircons indicated an evolved source with strong crustal contribution. These data are in agreement with the negative values of εHft and εNdt calculated in Permian and Triassic igneous rocks from the North Patagonian Massif. The εHft about −4 of the Jurassic detrital zircons indicated a crustal origin for the source rocks and are clearly compatible with the isotopic compositions of the Chon Aike Igneous Province. A volcanic source region compatible with the Andean arc is dismissed because the Jurassic arc has isotope characteristics of a mantle source.


Hf isotopes U-Pb detrital ages Provenance Cuyo Group Neuquén Basin 



Maximiliano Naipauer acknowledges the financial support of CONICET and ANPCyT PICT-2010–2099, Argentina. This is the contribution R-235 of the Instituto de Estudios Andinos “Don Pablo Groeber” (CONICET-UBA).


  1. Al-Suwaidi AH, Angelozzi GN, Baudin F, Damborenea SE, Hesselbo SP, Jenkyns HC, Manceñido MO, Riccardi AC (2010) First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. Geol Soc of London 167:633–636CrossRefGoogle Scholar
  2. Armella C, Leanza HA, Corfu F (2016) Synsedimentary ash rains and paleoenvironmental conditions during the deposition of the Chachil Formation (Pliensbachian) at its type locality, Neuquén Basin, Argentina. J South Am Earth Sci 71:82–95CrossRefGoogle Scholar
  3. Benedini L, Gregori D, Strazzere L, Falco JI, Dristas JA (2014) Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina. J South Am Earth Sci 56:1–19CrossRefGoogle Scholar
  4. Burgess PM, Flint S, Johnson S (2000) Sequence stratigraphic interpretation of turbiditic strata: an example from Jurassic strata of the Neuquén basin, Argentina. Geol Soc Am Bull 112(11):1650–1666CrossRefGoogle Scholar
  5. Chang Z, Vervoort JD, McClelland WC, Knaack C (2006) U-Pb dating of zircon by LA-ICP-MS. Geochem Geophy Geosy 7:1–14CrossRefGoogle Scholar
  6. Cúneo R, Ramezani J, Scasso R, Pol D, Escapa I, Zavattieri AM, Bowring SA (2013) High-precision U-Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: implications for terrestrial faunal and floral evolution in Jurassic. Gondwana Res 24:1267–1275CrossRefGoogle Scholar
  7. De la Cruz R, Suárez M (1997) El Jurásico de la cuenca de Neuquén en Lonquimay, Chile: Formación Nacientes del Biobío (38–39°8). Rev Geol de Chile 24(1):3–24Google Scholar
  8. D’Elia L, Bilmes A, Franzese JR, Veiga GD, Hernández M, Muravchik M (2015) Early evolution of the southern margin of the Neuquén Basin, Argentina: tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays. J South Am Earth Sci 64:42–57CrossRefGoogle Scholar
  9. Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstone in relation to tectonic setting. Geol Soc Am Bull 94:222–235CrossRefGoogle Scholar
  10. Féraud G, Alric V, Fornari M, Bertrand H, Haller M (1999) 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth Planet Sci Lett 172:83–96CrossRefGoogle Scholar
  11. Fanning CM, Hervé F, Pankhurst RJ, Rapela CW, Kleiman LE, Yaxley GM, Castillo P (2011) Lu-Hf isotope evidence for the provenance of Permian detritus in accretionary complexes of western Patagonia and the northern Antarctic Peninsula region. J South Am Earth Sci 32:485–496Google Scholar
  12. Franzese JR (1995) El Complejo Piedra Santa (Neuquén, Argentina): parte de un cinturón metamórfico neopaleozoico del Gondwana suroccidental. Rev Geol de Chile 22(2):193–202Google Scholar
  13. Franzese JR, Spalletti LA (2001) Late Triassic-early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. J South Am Earth Sci 14:257–270CrossRefGoogle Scholar
  14. Franzese JR, Pankhurst RJ, Rapela CW, Spalletti LA, Fanning M, Muravchik M (2002) Nuevas evidencias geocronológicas sobre el magmatismo Gondwánico en el noroeste del Macizo Nordpatagónico. 15 Congreso Geológico Argentino, Actas en CD, El CalafateGoogle Scholar
  15. García Morabito E, Ramos VA (2012) Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38º30´–40º30´S). J South Am Earth Sci 38:13–30CrossRefGoogle Scholar
  16. Gaschnig RM, Vervoort JD, Lewis RS, Tikoff B (2011) Isotopic evolution of the Idaho batholith and Challis intrusive province, northern US Cordillera. J Petrol 52:2397–2429CrossRefGoogle Scholar
  17. Gulisano CA (1981) El ciclo cuyano en el norte de Neuquén y sur de Mendoza. XVIII Congreso Geológico Argentino (San Juan), Actas III, pp 573–592Google Scholar
  18. Gulisano CA, Gutiérrez Pleimling AR (1994) Guía de campo El Jurásico de la Cuenca Neuquina, b) Provincia de Mendoza. Asociación Geológica Argentina, Serie E 3, 1–103, Buenos AiresGoogle Scholar
  19. Gulisano CA, Gutiérrez Pleimling AR, Digregorio RE (1984) Esquema estratigráfico de la secuencia jurásica del oeste de la Provincia de Neuquén. IX Congreso Geológico Argentino, Actas 1:236–259Google Scholar
  20. Hervé F, Calderón M, Fanning CM, Pankhurst RJ, Godoy E (2013) Provenance variations in the Late Paleozoic accretionary complex of central Chile as indicated by detrital zircons. Gondwana Res 23:1122–1135Google Scholar
  21. Howell JA, Schwarz E, Spalletti LA, Veiga GD (2005) The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a Case Study in Sequence Stratigraphy and Basin Dynamics, vol 252. Geol Soc. Special Publications, London, pp 1–14Google Scholar
  22. Kamo SL, Riccardi AC (2009) A new U-Pb zircon age for an ash layer at the Bathonian-Callovian boundary, Argentina. GFF 131:177–182CrossRefGoogle Scholar
  23. Kay SM, Ramos VA, Mpodozis C, Sruoga P (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to middle Proterozoic in North America? Geology 17:324–328CrossRefGoogle Scholar
  24. Leanza HA, Hugo C (1997) Hoja Geológica 3969-III. Picún Leufú. Provincias de Neuquén y Río Negro. Servicio Geológico Minero Argentino, Boletín 218, 135 pp., Buenos AiresGoogle Scholar
  25. Leanza HA, Mazzini A, Corfu F, Llambías EJ, Svensen H, Planke S, Galland O (2013) The Chachil Limestone (Pliensbachian-earliest Toarcian) Neuquén Basin, Argentina: U-Pb age calibration and its significance on the Early Jurassic evolution of southwestern Gondwana. J South Am Earth Sci 42:171–185CrossRefGoogle Scholar
  26. Llambías EJ, Caminos R, Rapela CW (1984) Las plutonitas y vulcanitas del Ciclo Eruptivo Gondwánico. Noveno Congreso Geológico Argentino, Relatorio:85–117Google Scholar
  27. Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico Temprano en la Cordillera del Viento (37º05´S-37º15´S): nuevas evidencias geológicas y geoquímicas del inicio de la cuenca Neuquina. Rev Asoc Geol Argentina 62(2):217–235Google Scholar
  28. Lucassen F, Trumbull R, Franz G, Creixell C, Vásquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to Recent compositional evolution of the Chilean Pacific margin (36-41° S). J South Am Earth Sci 17:103–119CrossRefGoogle Scholar
  29. Martínez Dopico C, Lopez de Luchi M, Rapalini AE, Kleinhanns IC (2011) Crustal segments in the North Patagonian Massif, Patagonia: an integrated perspective based on Sm/Nd isotope systematics. J South Am Earth Sci 31:324–341CrossRefGoogle Scholar
  30. Mazzini A, Svensen H, Leanza HA, Corfu F, Planke S (2010) Early Jurassic shale chemostratigraphy and U-Pb ages from the Neuquén Basin (Argentina): implications for the Toarcian Oceanic Anoxic Event. Earth Planet Sc Lett:297, 633e645Google Scholar
  31. Mosquera A, Silvestro J, Ramos VA, Alarcón M, Zubiri M (2011) La estructura de la Dorsal de Huincul. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y recursos naturales de la provincia de Neuquén. Relatorio del XVIII Congreso Geológico Argentino, Buenos Aires, pp 385–397Google Scholar
  32. Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina. In: Ericksen GE, Cañas MT, Reinemud JA (eds) Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources Circumpacific Council for Energy and Mineral Resources, 11. Earth Sci Series:59–90Google Scholar
  33. Naipauer M, Ramos VA (2016) Changes in source areas at Neuquén Basin: Mesozoic evolution and tectonic setting based on U-Pb ages on zircons. In: Naipauer M, Sagripanti L, Ghiglione M, Orts D (eds) Folguera A. Growth of the Southern Andes, Springer, pp 33–61Google Scholar
  34. Naipauer M, García Morabito E, Marques JC, Tunik V, Rojas Vera E, Vujovich GI, Pimentel MP, Ramos VA (2012) Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface data and U-Pb detrital zircon ages. Tectonophysics 524–525:59–75CrossRefGoogle Scholar
  35. Oliveros V, Féraud G, Aguirre L, Fornari M, Morata D (2006) The Early Andean Magmatic Province (EAMP): 40Ar/39Ar dating on Mesozoic volcanic and plutonic rocks from the Coastal Cordillera, Northern Chile. J Volcanol Geotherm Res 157:311–330CrossRefGoogle Scholar
  36. Pángaro F, Pereira DM, Micucci E (2009) El sinrift de la Dorsal de Huincul, Cuenca Neuquina: evolución y control sobre la estratigrafía y estructura del área. Rev Asoc Geol Argentina 65(2):265–277Google Scholar
  37. Pankhurst RJ, Rapela CR (1995) Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia. Earth Planet Sci Lett 134:23–36CrossRefGoogle Scholar
  38. Pankhurst RJ, Leat PT, Sruoga P, Rapela CW, Marquez M, Storey BC, RileyTR (1998) The Chon-Aike silicic igneous province of Patagonia and related rocks in West Antarctica: a silicic LIP. J Volcanol Geotherm Res 81:113–136Google Scholar
  39. Pankhurst RJ, Riley TR, Fanning CM, Kelley SP (2000) Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. J Petrol 41:605–625CrossRefGoogle Scholar
  40. Pankhurst R, Rapela C, Fanning C, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth-Sci Rev 76:235–257CrossRefGoogle Scholar
  41. Pankhurst RJ, Rapela CW, López De Luchi MG, Rapalini AE, Fanning CM, Galindo C (2014) The Gondwana connections of northern Patagonia. Geol Soc of London 171(3):313–328CrossRefGoogle Scholar
  42. Parada MA, López-Escobar L, Oliveros V, Fuentes F, Morata D, Calderón M, Aguirre L, Féraud G, Espinoza F, Moreno H, Figueroa O, Muñoz Ravo J, Troncoso Vásquez R, Stern CR (2007) Andean magmatism. In: Moreno T, Gibson W (eds) The Geology of Chile, vol 4. Geol Soc, Special Publications, London, pp 115–146Google Scholar
  43. Fedo CM, Sircombe KN, Rainbird, RH (2003) Detrital zircon analysis of the sedimentary record. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:277–303Google Scholar
  44. Ramos VA (1999) Las provincias geológicas del territorio argentino. In: Caminos R L (ed) Geología Argentina. Segemar Anales 29(3):41–96Google Scholar
  45. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin: A case study in sequence stratigraphy and basin dynamics, vol 252, Geol Soc, Special Publications, London, pp 15-35Google Scholar
  46. Rapela CW, Pankhurst RJ, Fanning CM, Hervé F (2005) Pacific subduction coeval with the Karoo mantle plume: the Early Jurassic Subcordilleran belt of northwestern Patagonia. Geol Soc Lond, Spec Publ 246:217–239CrossRefGoogle Scholar
  47. Rolando AP, Hartmann LA, Santos JOS, Fernandez RR, Etcheverry RO, Schalamuk IA, Mcnaughton NJ (2002) SHRIMP zircon U-Pb evidence for extended Mesozoic magmatism in the Patagonian batholith and assimilation of Archaean crustal components. J South Am Earth Sci 15:267–283CrossRefGoogle Scholar
  48. Sato AM, Llambías EJ, Basei MAS, Castro CE (2015) Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins J South Am. Earth Sci 63:48–69Google Scholar
  49. Schiuma M, Llambías EJ (2008) New ages and chemical analysis on Lower Jurassic volcanism close to the Huincul High, Neuquén. Rev Asoc Geol Argentina 63(4):644–652Google Scholar
  50. Silvestro J, Zubiri M (2008) Convergencia oblicua: modelo estructural alternativo para la Dorsal Neuquina (39° S), Neuquén. Rev Asoc Geol Argentina 63(1):49–64Google Scholar
  51. Spalletti LA, Franzese J, Morel E, D´Elia L, Zúñiga A, Fanning M (2010) Consideraciones acerca de la sedimentología, paleobotánica y geocronología de la Formación Piedra del Águila (Jurásico Inferior, Neuquén). Rev Asoc Geol Argentina 66(3):305–313Google Scholar
  52. Suarez M, Márquez M (2007) A Toarcian retro-arc basin of Central Patagonia (Chubut), Argentina: Middle Jurassic closure, arc migration and tectonic setting. Andean Geol 34:63–80Google Scholar
  53. Varela R, Basei MAS, Cingolani CA, Siga O Jr, Passarelli CR (2005) El basamento cristalino de los Andes Norpatagónicos en Argentina: geocronología e interpretación tectónica. Rev Geol Chile 32(2):167–187CrossRefGoogle Scholar
  54. Vásquez P, Glodny J, Franz G, Frei D, Romer RL (2011) Early Mesozoic Plutonism of the Cordillera de la Costa (34–37° S), Chile: constraints on the onset of the Andean Orogeny. J Geol 119(2):159–184CrossRefGoogle Scholar
  55. Vergani GD, Tankard AJ, Belotti HJ, Welsink HJ (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum basins of South America, vol 62. Am Assoc Pet Geol Bull, Memoirs, pp 383–402Google Scholar
  56. Volkheimer W (1973) Palinología estratigráfica del Jurásico de la sierra de Chacai Co y adyacencias (Cuenca Neuquina, Argentina). I. Estratigrafía de las Formaciones Sierra Chacai Co (Pliensbachiano), Los Molles (Toarciano), Cura Niyeu (Bajociano) y Las Lajas (Caloviano inferior). Ameghiniana 10:105–109Google Scholar
  57. Weaver C (1931) Paleontology of the Jurassic and Cretaceous of west central Argentina. In: Memoir, vol. 1. University of Washington, Seattle, pp 1–469Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maximiliano Naipauer
    • 1
  • Ezequiel García Morabito
    • 1
    • 2
  • Marcelo Manassero
    • 3
  • Victor V. Valencia
    • 4
  • Victor A. Ramos
    • 5
  1. 1.Instituto de Estudios Andinos “Don Pablo Groeber” (UBA—CONICET, Argentina)Buenos AiresArgentina
  2. 2.Swiss Federal Institute of Technology (ETH Zurich)ZurichSwitzerland
  3. 3.Centro de Investigaciones Geológicas (UNLP—CONICET, Argentina)Buenos AiresArgentina
  4. 4.School of the EnvironmentWashington State UniversityPullmanUSA
  5. 5.Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, FCENUniversidad de Buenos Aires–CONICETBuenos AiresArgentina

Personalised recommendations